
20
21

 I
E

E
E

/A
C

M
 4

3r
d

In
te

rn
at

io
na

l
C

on
fe

re
nc

e
on

 S
of

tw
ar

e
E

ng
in

ee
ri

ng
 (

IC
S
E

)
| 9

78
-1

-6
65

4-
02

96
-5

/2
0/

$3
1.

00
 ©

20
21

 I
E

E
E

 |
D

O
I:

 1
0.

11
09

/I
C

S
E

43
90

2.
20

21
.0

01
50

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

ATVHu n t e r : Reliable Version Detection of

Third-Party Libraries for Vulnerability Identification
in Android Applications

Xian Zhan1, Lingling Fan2, Sen Chen3, Feng Wu4, Tianming Liu5, Xiapu Luo1, Yang Liu4

1 Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

2CoIlege of Cyber Science, Nankai Univerisity, China

3College of Intelligence and Computing, Tianjin University, China

4School of Computer Science and Engineering, Nanyang Technological University, Singapore

5Faculty of Information Technology, Monash University, Australia

Abstract—Third-party libraries (TPLs) as essential parts in
the mobile ecosystem have become one of the most significant
contributors to the huge success of Android, which facilitate
the fast development of Android applications. Detecting TPLs
in Android apps is also important for downstream tasks, such
as malware and repackaged apps identification. To identify in-
app TPLs, we need to solve several challenges, such as TPL
dependency, code obfuscation, precise version representation.
Unfortunately, existing TPL detection tools have been proved
that they have not solved these challenges very well, let alone
specify die exact TPL versions.

To this end, we propose a system, named ATVHunter, which
can pinpoint the precise vulnerable in-app TPL versions and
provide detailed information about the vulnerabilities and TPLs.
We propose a two-phase detection approach to identify specific
TPL versions. Specifically, we extract the Control Flow Graphs as
the coarse-grained feature to match potential TPLs in the pre-
defined TPL database, and then extract opcode in each basic
block of CFG as the fine-grained feature to identify the exact
TPL versions. We build a comprehensive TPL database (189,545
unique TPLs with 3,006,676 versions) as the reference database.
Meanwhile, to identify the vulnerable in-app TPL versions, we
also construct a comprehensive and known vulnerable TPL
database containing 1,180 CVEs and 224 security bugs. Exper-
imental results show ATVHunter outperforms state-of-the-art
TPL detection tools, achieving 90.55% precision and 88.79%
recall with high efficiency, and is also resilient to widely-used
obfuscation techniques and scalable for large-scale TPL detection.
Furthermore, to investigate the ecosystem of the vulnerable TPLs
used by apps, we exploit ATVHunter to conduct a large-
scale analysis on 104,446 apps and find that 9,050 apps include
vulnerable TPL versions with 53,337 vulnerabilities and 7,480
security bugs, most of which are with high risks and are not
recognized by app developers.

I . I n t r o d u c t io n

Nowadays, over 3 million Android applications (apps) are

available in the official Google Play Store [1]. One reason

contributing to the huge success of Android could be the

massive presence of third-party libraries (TPLs) that provide

reusable functionalities that can be leveraged by developers
to facilitate the development of Android apps (to avoid rein-
venting the wheels). However, extensive TPL usage attracts
attackers to exploit the vulnerabilities or inject backdoors in

the popular TPLs, which poses severe security threats to app

users [2-4]. Previous research [5, 6] pointed out that many

apps contain vulnerable TPLs, and some of them have been

reported with severe vulnerabilities (e.g., Facebook SDK) that
can be exploited by adversaries [7, 8]. Attackers can exploit
the vulnerabilities in some Ad libraries (e.g., Airpush [9],
MoPub [10]) to get privacy-sensitive information from the in-
fected devices [11]. Even worse, various TPLs are scattered in

different apps but the information of TPL components in apps
is not transparent. Many developers may not know how many

and which TPLs are used in their apps, due to many direct
and transitive dependencies. Additionally, about 78% of the

vulnerabilities are detected in indirect dependencies, making

the potential risks hard to spot [12]. Thus, vulnerable TPL

identification has become an urgent and high-demand task and

TPL version detection has become a standard industry product
named as Software Composition Analysis (SCA) [12, 13].

Existing TPL detection techniques use either clustering-
based methods (e.g., LibRadar [14], LibD [15, 16]) or sim-
ilarity comparison methods (e.g., LibID [17], LibScout [5]) to

identify TPLs used by the apps. However, according to our

analysis and previous study [18], we conclude the following

deficiencies in existing approaches: 1) Low recall. Clustering-
based methods only can identity commonly-used TPLs and

may miss some niche and new TPLs, whose recall depends on

the number of input apps and the reuse rate of TPLs. Besides,
the code similarity of different versions and TPL could be vari-
ous, which makes it difficult to choose appropriate parameters
of the clustering algorithm to perfectly distinguish different
TPLs or even versions. Verifying the clustering results is

also labor-intensive and error-prone. Similarity comparison

methods construct a predefined TPL database as the reference

database. However, current published size of TPL database

is far smaller than the number of TPLs in the actual market
thus cannot be used to identify a complete set of in-app TPLs.
Apart from that, existing techniques more or less depend on

the package structure, especially using package structure to

construct the in-app library candidates. Whereas, the package

structure/name of the same TPL in different versions could

978-1-6654-0296-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE43902.2021.00150

1695

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:56 UTC from IEEE Xplore. Restrictions apply.

be mutant or easily obfuscated. Therefore, using packages as
a supplementary feature to generate TPL signatures is also

unreliable [18]. 2) Inability of precise version identification.
To find the vulnerabilities of the in-app TPLs, we need to

precisely pinpoint the exact TPL versions because not all
TPL versions are vulnerable. Even though there are many

TPL detection tools, none of them can meet our requirements.
AdDetect [19] just can distinguish the ad and non-ad libraries.
ORLIS [20] just provides the matching class. Clustering-
based tools (e.g., LibRadar [14], LibD [15, 16]) do not claim

they can pinpoint the exact TPL versions. Besides, current
tools [5, 7, 17, 21] usually reported many false positives at
version-level identification [18]. Thus, existing tools are not
suitable for vulnerable TPL detection.

Apart from the aforementioned weaknesses of existing

tools, we still face some challenges in this research direction:
1) Lack of vulnerable TPL version dataset. To enable
vulnerable TPL version (TPL-V) identification, we need a

comprehensive set of known vulnerable TPL-Vs. Ideally, for

each vulnerable TPL, it includes TPL names, versions, types,
vulnerability severity, etc. However, to the best of our knowl-
edge, no such dataset is publicly available. 2) Precise version

representation. We need to distinguish TPLs at version level,
however, it is challenging to extract appropriate code features
to represent different versions of the same TPL, especially

when the code difference of different versions is tiny. 3)
Interference from code obfuscation. Many code obfuscation

tools (e.g., DashO [22], Proguard [23], and Allatori [24]) can

be used to obfuscate apps and TPLs. For example, dead code

removal can delete the code without invocation by host apps.
These techniques can change the code similarity between in-
app TPLs and the original TPLs. Undoubtedly, obfuscation

techniques increase the difficulty of TPL identification.
To fill aforementioned research gap, we propose a sys-

tem, named ATVHunter (Android in-app Third-party library
Vulnerability Hunter), which is an obfuscation-resilient TPL-
V detection tool and can report detailed information about
vulnerabilities of in-app TPLs. ATVHunter first uses class
dependency relations to split the independent candidate TPL

modules from the host app and adopts a two-phase strategy to

identify in-app TPLs. It extracts CFGs as the coarse-grained

features to locate the potential TPLs in the feature database to

achieve high efficiency. It then extracts the opcode sequence in

each basic block of CFG as the fine-grained feature to identify

the precise version by employing the similarity comparison

method. To ensure the recall, we constructed our TPL feature
database by collecting comprehensive and large-scale Java

libraries from the maven repository [25]. We use the fuzzy

hash method to generate the signature, which can alleviate

the effects from code obfuscation. Compared with previous
methods, ATVHunter does not depend on the package

structure. The main contributions of this work are as follows:
• An effective TPL version detection tool. We propose

ATVHunter, an obfuscation-resilient TPL-V detection

tool with high accuracy that can find vulnerable in-app

TPL-Vs and provide detailed vulnerabilities and compo-

nents reports. With the help of our industry collaborator,
ATVHunter was integrated as a branch of an online

service1 to help users identify vulnerable Android TPLs.
■ Comprehensive datasets. We have constructed a com-

prehensive and large-scale TPL feature database at
present, which includes 189,545 TPLs with corresponding

3,006,676 versions to identify in-app TPLs. We are the first
to construct a comprehensive vulnerable TPL-V database

for Android apps, including 1,180 CVEs from 957 TPLs
with 38,243 vulnerable versions and 224 security bugs
from 152 open-source TPLs with 4,533 affected versions.

■ Thorough comparisons. We conduct systematic and thor-
ough comparisons between ATVHunter and the state-
of-the-art tools from different perspectives. The evaluation
result demonstrates ATVHunter is resilient to widely-
used obfuscation techniques and outperforms the state-of-
the-art TPL-V detection tools, achieving high precision

(90.55%) and recall (88.79%) at version-level identifica-
tion. We published the related dataset on our website [26],

■ Large-scale analysis. We leverage ATVHunter to con-
duct a large-scale study on 73,110 apps using TPLs and

find 9,050 apps contain 10,616 vulnerable TPLs. These
vulnerable TPLs include 53,337 known vulnerabilities and

7,480 security bugs. Most of them use TPLs containing

severe vulnerabilities.

II. Related W ork

Library Detection. AdDetect [19] and PEDAL [27] use
features such as permissions and APIs to train a classifier to

distinguish ad libraries and non-ad libraries. Whereas, these

studies fail to identify other types of libraries, such as develop-
ment aids, UI plugins. Currently, there are three TPL detection

tools based on the clustering algorithms., i.e., LibRadar, LibD,
and LibExtractor. LibRadar [14] extracts the Android API
calls, the total number of API calls and total kinds of API
calls as the code features and it chooses the multi-level
clustering method to identify potential TPLs. LibD [15, 16]
extracts the opcode in each CFG block as the code feature.
LibExtractor [28] exploits the clustering-based method to

find potential malicious libraries. In general, clustering-based

approaches have three common weaknesses: 1) they require

a considerable number of apps as input to generate enough

TPL signatures. It is also difficult to find emerging or niche

TPLs. It also can import some impurities. For instance, if
an app is repackaged many times, clustering methods may

consider the repackaged host app as a TPL. 2) clustering-based
methods may find incomplete TPLs. Some TPLs also depend

on other TPLs, but clustering method could separate them into

several parts. 3) The above clustering-based approaches more

or less rely on package names and package structures, which

can be easily obfuscated by existing obfuscators [22-24].
LibD claims it is resilient to package name obfuscation and

package structure mutation, but package flattening technique

can remove the whole package structure and change the

1 w w w .s c a n t i s t . i o

1696

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:56 UTC from IEEE Xplore. Restrictions apply.

internal package structure. LibSift [29] constructs the package

dependency graph (PDG) to split independent TPL candidates.
LibSift does not identify specific libraries, only decouples
TPLs into different parts from the host app. Han et al. [30]
aim to measure the behavior differences by comparing benign
TPLs and malicious TPLs. It extracts the opcode and Android

type tags as features and hashes all feature in each method, and

then compare it with the ground-truth libraries to identify the

libraries. LibScout [5] is a similarity-based library detection

tool, which uses the Merkle Tree [31] to generate each library

instance signature. LibScout chooses the fuzzy method as
code feature which changes the non-system identifiers (in the

method signature) by using placeholder “X”. ORLIS [20] uses
the same code feature of LibScout [5] but different feature
generation approach. LibScout and ORLIS can be resilient to

identifier renaming. Whereas, the code feature of LibScout is

too coarse, which affects the detection performance. Besides,
ORLIS can only provide the matched class to users, which is

not user-friendly. Thus, they are not good choices for off-the-
shelf TPL detection. LibPecker [7] is also a matching-based

library identification tool, which exploits the class dependency

as the code features and hashes it as the fingerprint to find
TPLs. LibPecker then uses the Fuzzy Class matching method

to compare it with the libraries in the database. However, the

comparison process is time-consuming. Moreover, LibPecker

also assumes the package hierarchy is not change when the

TPL is imported into an app, which will affect the recall.
LibID [17] is also a TPL version detection tool, but it chooses
dex2jar [32] as the decompile tool. The reverse-engineering

capability of dex2jar directly limits the detection ability of
LibID. More details are clarified in § IV.
Vulnerable TPL/App Identification. Yasumatsu et al. [6]
attempt to understand how app developers response to the

update of TPLs. They studied vulnerable versions of seven
TPLs and corresponding apps. By comparing the evolution

time between different TPL-Vs and apps versions, they mea-
sured the reaction of app developers to these vulnerable TPL

versions. The number of vulnerable TPL is too small in their

dataset, which cannot show the full picture of the infected apps
and vulnerable TPLs. OSSPolice [21] is an automated tool
for identifying free software license violations and vulnerable

versions of open-source third-party libraries, including both

native libraries and Java libraries. It extracts the fuzzy method

signature as the library feature and function centroid [33] as
the version feature to identify TPL-Vs. However, generating
centroid is substantial in terms of resource consumption.

III. Architecture

We design a system, ATVHunter, which takes an Android

app as input, and automatically identify the used vulnerable

TPL-Vs (if any) according to the constructed database. Fig. 1
shows the system design which is divided into two parts: (1)
TPL-V detection, which identifies the specific versions of TPLs
used by apps; and (2) vulnerable TPL-V identification, which

can identify the vulnerable in-app TPL-Vs based on our col-
lected known vulnerabilities from NVD [34] and Github [35].

Based on the database, we also conduct a large-scale study to

assess the ecosystem of Android apps in terms of the usage

of vulnerable TPLs. Details are introduced as follows.

A. TPL Detection

The TPL detection part of ATVHu n t e r includes four key

phases: (1) Preprocessing, (2) Module decoupling, (3) Feature

generation, and (4) TPL identification.
1) Preprocessing: ATVHunter primarily conducts two

tasks in this phase. The first task is to decompile the input
app and transform the bytecode into appropriate intermediate

representations (IRs). The second task is to find the primary

module in the app and delete it to eliminate the interference

from the host app. If an app includes TPLs, we call the

code of the host app as the “primary” module and the in-
app TPLs constitute the “non-primary” module. ATVHunter
first parses the AndroidManifest.xml file and gets the host app

packages. Sometimes, the code of the host app may belong
to several different namespace, therefore, we need to extract
the app packages, application namespace and the package

namespace including the Main Activity (i.e., the launcher

Activity) and delete these files under the host namespace.
However, this approach also has following side effects: 1) part
of host code suffers from the package flattening or renaming

obfuscation and cannot be delete. 2) part of host code cannot
be delete due to special package name. 3) the host app and
TPLs have the same package namespace, the method may

delete these TPLs, leading to false negatives. As for the case 1)
& 2), if the host code and TPLs have no dependencies, it will
not affect the accuracy of TPL identification. If the undeleted

host parts include the TPLs, we can eliminate the interference

in the comparison stage.
2) Module Decoupling: The purpose of module decoupling

is to split up the non-primary module of an app into different
independent library candidates. Previous research adopts dif-
ferent features for module decoupling such as package struc-
ture, homogeny graph [15], and package dependency graph

(PDG), however, they more or less depend on the package

structure of apps. Using the package name or the independent
package structure to split the in-app TPLs is error-prone, which
has two obvious disadvantages: 1) low resiliency to package

flattening [36]; 2) inaccurate TPL instance construction. There

are many different TPLs sharing the same root package.
For instance, “com.android.support.appcompat-v7” [37] and

“com.android.support.design” [38] are two different TPLs but
the share the same root package com/android/support. Besides,
one TPL may has multiple parallel package structures, as can

be seen an example in Fig. 2, this TPL[39] depends on other

TPLs to build itself and developer deploy the “Fat” jar mode to

package this project. The host TPL with all invoked TPLs con-
stitutes a complete TPL. TPL dependencies are very common,
about 47.3% of Android TPLs in maven repository depend

on others based on our rough statistics. To overcome it, we

adopt the Class Dependency Graph (CDG) as the features to

split up the TPL candidates because CDG does not depend on

the package structure, it is resilient to package flattening. The

1697

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:56 UTC from IEEE Xplore. Restrictions apply.

(DPreprocessing © Module Decoupling © Feature Generation ® Library Identification

~ * 1 —
APK 1

Decompiling Candidate TPL
decoupling

Coarse-grained feature
generation (CFG)

Potential TPL
search

Primary module (Class Dependency) Fine-grained feature TPL version
elimination generation (opcode of CFG) identification

TPLs with
specific versions

M laEPO STO BY-

NVD -
O W -

GitHub Bitbucket

(3) Feature Generation ~TPL Feature
D atabase

V u lnerab ility Collection

D-i
Mapping -

Security Bug Collection
V u lnerab ility

Database lH
Vulnerab le

TPL Database

Offline DB Construction

© Vulnerable TPL
Version identification

Vulnerable TPL versions
S TPL info : nam e, vers ion , etc.
S Vul in fo : typ e , CVSS, etc.

Fig. 1: Workflow of ATVHu n t e r

| com.orange.redis-protocol j
| |— redis r- netty4 j
; L- reply

*— server |
| —. org — slf4j i

| com r- google |
-- sampullare

Fig. 2: An example of a TPL’s package structure

class dependency relationship includes: 1) class inheritance,

we do not consider the interface relationship because it can

be deleted in obfuscation, 2) method call relationship, and

3) field reference relationship. We use CDGs to find all the

related class files, and each CDG will be considered as a

TPL candidate in general situation. Using CDGs can avoid

the aforementioned situations and package mutation and also

be resilient to package flattening.

In ATVHu n t e r , we use similarity-based method to iden-

tify TPL-Vs, we generate the TPL feature database by using

the complete TPL files that we downloaded from the maven

repository. Therefore, we need to pay attention the packaging

techniques of Java projects. To facilitate maintenance, most

developers usually adopt the “skinny” mode to package a

TPL, which means the released version only contains the

code by TPL developers without any dependency TPLs. The

dependency TPLs will be loaded during compilation. To solve

this situation, we crawl the meta-data of each TPL and record

their dependency TPLs and packaging technique [40] by

reading the “pom.xmT file. If the “pom.xml” claims “jar-

with-dependencies”, it means it includes all dependency TPLs,

otherwise, it just includes the host TPL code. If we find a jar

which is a skinny one, we also need to split their dependency

TPLs by using their package namespace so that we can match

the correct version in TPL database.

3) Feature Generation: After splitting the candidate li-

braries, we then aim to extract features and generate the

fingerprint (a.k.a., signature) to represent each TPL file. To

ensure scalability and accuracy, we choose two granularity

features. The coarse-grained feature is used to help us quickly

locate the potential TPLs in the database. The fine-grained

feature is used to help us identify the TPL-V precisely. (1) For

coarse-grained features, we choose to extract the Control Flow

Graph (CFG) to represent the TPL since CFG is relatively

stable [41]. CFG also keeps the semantic information that

ensures the accuracy to some extent [42]. (2) For fine-grained

features, we extract the opcode in each basic block of CFG as

the feature for exact version identification.

Coarse-grained Feature Extraction. We first extract the CFG

for each method in the candidate TPLs, and traverse the

CFG to assign each node a unique serial number (starting

from 0) according to the execution order. For a branch node

with sequence number n, its child with more outgoing edges

will be given sequence number n + 1 and the other child

is given n + 2. If two child nodes have the same outgoing

edges, we will give n + 1 to the child node with more

statements in the basic block. We then convert the CFGs into

signatures based on the assigned serial numbers of each node

to represent each unique TPL, in the form of [node count,
edge adjacency list], where the adjacency list is repre-

sented as: [parenti -> {child\, child}, . . .) , parent2
-> . . .]. We then hash the adjacency list of CFG as a

method signature. To improve the search efficiency, we sort

these hash values in ascending order and then hash the

concatenate values as one of the coarse-grained TPL features

(Tl). Meanwhile, we also keep the series of CFG signatures

in our database to represented each TPL in feature database.

Fine-grained Feature Extraction. Based on our analysis, we

find the code similarity of different versions for the same TPL

could be diverse, which can range from about 0% to nearly

100%. The coarse-grained features (i.e., CFG) are likely to

generate the same signature of different versions that have mi-

nor changes such as insert/delete/modify a statement in a basic

block. Therefore, we propose finer-grained features, i.e., op-

code in each basic block of CFG, to represent each version file.

However, extracting more fine-grained features will increase

more computational complexity and cost of the computing re-

sources. To ensure the scalability of ATVHUNTER, a common

way to achieve that is through hashing [43]. However, hash-

based method has an obvious drawback to determine whether

two objects (e.g., TPLs, methods) are similar because a minor

modification can lead to a dramatic change of the hash value.

Thus, we adopt the fuzzy hashing technique [44] instead of the

traditional hash algorithm to generate the code signature for

1698

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Fuzzy hashing for method feature generation as the

version feature

each method. Fig. 3 shows the feature generation process for

TPL-Vs. Specifically, we first extract all the opcode sequences

inside each basic block and concatenate them together. We

do not consider the operands (e.g., identifier names or hard-

coded URLs) that are not robust for some simple obfuscation

techniques such as renaming obfuscation and string encryption

techniques [43, 45]. We then concatenate all opcode sequences

of each basic block according to the adjacency list of CFG.

In this step, our method is somewhat similar to LibD [15]

with respect to the code feature. We also adopt the opcode in

each basic block of CFG as the code feature. However, we

also have many differences. LibD uses a package-level hash

value as the final signature and uses the clustering algorithm to

detect TPLs. While in ATVHu n t e r , to defend against code

obfuscation or TPL customization [7], we use the fuzzy hash

on each method-level feature and similarity comparison to find

similar methods. We first use a slide window (a.k.a., rolling

hash [44]) to cut the opcode sequence into small pieces. Each

piece has an independent contribution to the final fingerprint.

If one part of the feature changes due to code obfuscation,

it would not cause a big difference to the final fingerprint.

We then hash each piece and combine them as the final fine-

grained fingerprint of each method. The fingerprints of all

methods in a version to represent a TPL-V.

TPL Database Construction. We crawled all Java TPLs

from Maven Repository [25] (189,545 unique TPLs with their

3,006,676 versions) to build our TPL database. We use the

above mentioned method to obtain the signature for each TPL.

For each version of TPLs, we store both coarse-grained and

fine-grained features in a MongoDB [46] database. The size of

the entire database is 300 GB. We spent more than one month

to collect all the TPLs and another two months to generate

the TPL feature database.

4) Library Identification: This step aims to identify the

used TPL-Vs in a given app. To achieve it efficiently, we

propose a two-stage identification method: 1) potential TPL

identification; 2) version identification.

1) Potential TPL Identification. Since there are over 3

million TPL files to be compared in our database for each

candidate library, to speed up the entire detection process,

we search the database in the following order: a) Search

by package names. For each library candidate, we first use

its package namespace (if not obfuscated) to narrow down

the search space in our database. Note that we cannot di-

rectly use the package name to determine a TPL, because

the same package namespace could include different third-

party libraries. For example, the Android support group [47]

includes 99 different TPLs. These TPLs have the same group

ID “com. android, support” and the same package name prefix

“android/support/”. If the package name has been obfuscated

or a candidate TPL module is without a package name, we

move to the next filtering strategy. Note that, even though it is

a non-trivial problem to decide the obfuscated package name,

in our work, the package name is only used as supplementary

information to speed up the search process. No matter whether

a candidate TPL can find a match in the TPL database by

using the package names, we still continue to search the TPL

database via other features. Thus, we only applied a simple

rule to identify the obfuscated apps: if a package name is a

hash value or a single letter, we consider it obfuscated, b)

Search by the number o f classes. We assume two TPLs are

unlikely to be the same one if the number of classes within

two TPLs has a big difference [48]. If the number of the classes

in a TPL only accounts for less than 40% of that in another

TPL in the database, we will not further compare them, which

can help us speed up the identification process, c) Search

by coarse-grained features. To speed up, we first search the

coarse-grained feature T1 in the TPL database; if we find the

same one, ATVHunter will report this TPL and stop the search

process. Otherwise, ATVHu n t e r will compare the candidate

TPL with TPLs in the database, if all the coarse features are

the same, we consider find the TPL and the search process will

stop. If over 70% of the coarse-grained features are the same

(followed by previous research [33, 43, 48, 49]), we consider

it as a potential TPL. When we find the potential TPL, we

will identify the exact version.

2) Version Identification. To identify the specific versions

of the used TPLs, we utilize the fine-grained features and

calculate the similarity ratio of two TPLs as the evaluation

metric. To ensure the efficiency, we do not compare these

matched methods in previous stage. ATVHu n t e r can record

the same method pair in the previous stage, therefore, we only

need to compare less than 30% of the methods in this phase.

Since some code obfuscation techniques (e.g., junk code inser-

tion) would change the fingerprints of methods, causing two

methods that were initially the same to be different. Therefore,

we need to compare the method similarity and consider two

methods matched only when their method similarity exceeds a

threshold. Based on the number of matched methods, we then

compute the TPL similarity. When the number of matched

methods exceeds the threshold, we consider we find the correct

TPL with its version.

• Method Similarity Comparison. We employ edit dis-
tance [43, 50] to measure the similarity between two method

fingerprints. The edit distance of two fingerprints is defined

as the number of minimum edit operations (i.e., insertion,

1699

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:56 UTC from IEEE Xplore. Restrictions apply.

deletion, and substitution) that is required to modify one

fingerprint to the other. Based on the edit distance of two

signatures, we compute the Method Similarity Score (MSS)
between two methods (i.e., m a and m b) by using the formula:

MSS(ma,mb) ̂ _ d[ma,m b\
m ax(m , n) (1)

where m and n represent the signature length of two methods
and d[ma, mb] is the edit distance of two method signatures.
If M S S exceeds a certain threshold 0, we consider the two

methods are matched. Based on our experimental result in

§ IV-A, we choose 6 = 0.85 as the threshold.
• TPL Similarity Comparison. Based on the number of
matched methods, the similarity of two TPLs (fy and ¿2) are

defined as follows:

T S S { t1, t 2) = M!^ nt21 (2)
M |t2|

where 11 is a TPL candidate from the test app, £2 is a TPL from

the database for comparison. M|t2 is the number of methods
in ¿2 • M\tl |~| t21 is the number of matched methods of 11 and £2
which should meet two conditions: (a) , m ,, where m* is
a method of t \ , m j is a method of ¿2 , M S S (m i, m j) > 6; (b)
3m j, that M S S (m i, m,j) = 1, that is, we only compare two

TPLs that have at least one exactly matched method in order

to speed up the identification process. For a TPL candidate fy,
we consider we find a potentially matched TPL-V (i2) in the

database when T S S (t \ , t 2) > S, S is the similarity threshold,
and select the TPL-V with the largest similarity score as the

final result of fy, providing the identified TPLs with group id,
artifact id and version number. We set the threshold 5 = 0.95

based on our experimental result in § IV-A.

B. Vulnerable TPL-V Identification
We first build a vulnerable TPL-V database, based on which

we identify the vulnerable TPL-Vs used by the apps.
1) Database Construction: The vulnerable TPL-V database

construction process includes collection of know vulnerabil-
ities in Android TPLs and security bugs from open-source

software.
Known TPL Vulnerability Collection. To collect the vul-
nerable TPL versions, we convert the names of all TPL files

(3,006,676 in total) in our feature database into Common

Platform Enumeration (CPE) format [51] and exploit cve-
search [52], a professional CVE search tool, to query the

vulnerable TPLs from the public CVE (Common Vulnera-
bilities and Exposures) database by mapping the transformed

TPL names. In this way, we can get the known vulnerabilities
of TPL-Vs and their detailed information, including the CVE

id, vulnerability type, description, severity score from Com-
mon Vulnerability Scoring System (CVSS) [53], vulnerable

versions, etc. We use CVSS v3.0 to indicate the severity of the

collected vulnerabilities in this paper. Finally, we collected

1,180 CVEs from 957 unique TPLs with 38,243 affected

versions.
Security Bug Collection. Since ATVHunter is able to
identify the specific versions of TPLs used by apps, therefore,

besides the known vulnerabilities, we also obtain 224 security

bugs from Github [35] and Bitbucket [54] owing to the col-
laboration with our anonymous industrial collaborators.These

bugs come from 152 open-source TPLs with their correspond-
ing 4,533 versions. All of these security bugs have been cross-
validated by the security experts in industry.

2) Vulnerable TPL-V Identification: When ATVHunter
identifies the used TPL-Vs in the app, it will search the vulner-
able TPL database to check whether these identified TPL-Vs
are vulnerable or not. If ATVHunter finds the vulnerable

TPL-Vs, it will generate a detailed vulnerability report to

users. We believe ATVHunter can serve as an extension

of ASI Program [11] for Google. The previous research [6]
reported that vulnerabilities listed on ASI program can draw

more attention to developers. However, the vulnerabilities
are reported by ASI program is limited. Our comprehensive

dataset can be a supplement to ASI program.

C. Implementation
ATVHunter is implemented in 2k+ lines of python

code. We employ Apktool [55], a reverse engineering tool
commonly-used by much previous work [56-59] to decompile

the Android apps and exploit Androguard [60] to obtain the

class dependency relations in order to get the independent
TPL candidates. We then employ Soot [61] to generate CFG

and also build on Soot to get the opcode sequence in each

basic block of a CFG. We use the ssdeep [62] to conduct
fuzzy hash algorithm to generate the code feature and employ

the edit distance [50] algorithm to find the in-app TPLs. Our

approach can pinpoint the specific TPL versions. We maintain

a library database containing more than 3 million TPL files

and construct a vulnerable TPL database that includes 224

security bugs from open-source Java software on Github, and

1,180 CVEs from 910 Android TPLs in public CVE databases.

IV. Evaluation

In this section, we first construct our ground truth and

choose appropriate thresholds for MSS and TSS in § IV-A.
Based on the thresholds, we further evaluate ATVHunter
from effectiveness (RQ1), scalability (RQ2), and the capa-
bility of code obfuscation-resilience (RQ3). All the experi-
ments were conducted on a commercial cloud service running

Ubuntu 16.04 LTS with 8-core Intel(R) Xeon(R) Gold 6151

processor, CPU @ 3.00GHz and 128G memory.

A. Preparation

• Ground-truth Dataset Construction. We build this dataset
for three primary purposes: 1) verify the effectiveness of
ATVHu n t e r ; 2) compare the performance with the state-
of-the-art tools; 3) release the datasets to the community to

promote follow-up research. Since it is difficult to know the

specific TPL-Vs from commercial apps, we choose the open-
source apps to compare ATVHu n t e r with existing tools.

We first collect the latest versions of 500 open-source apps
from F-Droid [63] that is the largest repository maintaining

open-source Android apps. We choose open-source apps as

1700

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:56 UTC from IEEE Xplore. Restrictions apply.

subjects since we can get the specific TPL information (in-

cluding the version) in the configuration files and source code

of apps, such a mapping relation between apps and TPLs is

used as the ground-truth for performance evaluation. These

apps are from 17 different categories with various sizes. For

each app, we manually analyze it and get the in-app TPLs

with their specific versions. According to our analysis, these

apps contain the number of TPLs ranging from 2 to 37 and

these TPLs also have different functions with diverse sizes.

We then download these TPLs with their versions from the

Maven repository [25]. To ensure the evaluation results more

reliable, we collect the complete versions of each TPL. We

filter 144 apps out due to the incomplete versions of TPLs

maintained in the Maven repository. Note that, based on our

analysis, we find the previous published datasets have some

biases. TPLs from LibScout and LibID are most independent

ones, thus, we add some TPLs that depend on other TPLs in

our dataset, such as “Retrofit” depends on “Guava”, to reveal

the lib identification capability of different tools. Finally, we

choose 356 apps and 189 unique TPLs with the complete 6,819

version files in these apps as the ground truth.

• Threshold Selection. To avoid bias, we randomly select

three groups (3 x 200) of apps except the aforementioned

dataset to decide appropriate thresholds for method similarity

score 0, and TPL similarity score 8. We use method-level false

positive rate (FPR) and false negative rate (FNR); and TPL-

level FPR and FNR as the metrics to decide the similarity

thresholds by varying 6 and 8 from different thresholds. We

employ the three groups of apps to implement the same

experiment three times and then decide the optimal thresholds.

Fig. (4a) shows the method-level FPR and FNR at different

similarity thresholds. We can find when the threshold 6 is

around 0.85, both the FPR and FNR are relatively low.

Therefore, we choose 6 = 0.85 as the MSS threshold where

the FPR is less than 1% and FNR is less than 0.5%, which

can achieve a good trade-off. Fig. (4b) shows the TPL-level

FPR and FNR at different thresholds. According to the result,

we find that when the threshold is gradually close to 0.8,

many false positives appear due to the same TPL with different

minor-changed versions. When the threshold is close to 1, the

number of false negatives increases. From Fig. 4, we can find

FPR and FNR achieve a good trade-off when the threshold is

around 0.95, we thus choose 0.95 as the threshold 8 of TSS. In

summary, we employ 0 = 0.85 and 8 = 0.95 for the following

experiments.

B. RQ1: Effectiveness Evaluation

Experimental Setup. For the effectiveness evaluation, we

compare ATVHu n t e r with the state-of-the-art publicly-

available TPL detection tools (i.e., LibID, LibScout, OSSPo-

LICE, and LibPecker) that can specify the used TPL versions

by using our ground truth dataset (§ IV-A). We employ three

evaluation metrics, i.e., precision (Tp+FP), recall (Tp+FN)
“ d FI Score to evaluate the detection

accuracy at both TPL-level and version-level. TPL-level iden-

tification indicates the ability to identify the in-app TPLs

correctly (without specifying the versions), and version-level

identification indicates the ability to find both the correct TPLs

and the correct versions. For example, if a tool reports that it

finds “okio-2.0.0, okio-2.3.0” in an app but the ground truth

is “okio-2.4.3”, in this situation, for TPL-level, we consider

the tool find the correct TPL; for version-level, we consider

there are two false positives and one false negative.

Result. Table I shows the comparison results of ATVHu n t e r

and other state-of-the-art tools. Considering the overall per-

formance, we can see ATVHu n t e r outperforms other tools

regarding all the metrics; the FI score of ATVHu n t e r at

library-level and version-level reached 93.43% and 88.82%,

respectively. For library-level identification, we can find that

all of them can achieve high precision at TPL-level identifi-

cation but the performance of recall of current state-of-the-

art tools is mediocre. In contrast, the recall of ATVHu n t e r

is 88.79%, which is far better than others. For version-level

identification, we can find the precision (90.55%) and recall

(87.16%) of ATVHu n t e r is much higher than that of other

tools. Compared with the library-level precision, we can see

the precision of each tool at version-level decreases a lot,

which means most of them can identify the TPL but they

cannot pinpoint the exact versions. We elaborate on the reasons

for false positives and false negatives of ATVHu n t e r and

other state-of-the-art tools as follows.

FP Analysis. The reasons for the false positives of

ATVHu n t e r can be concluded in three points: (1) reuse o f
open-source components. We find some TPLs are re-developed

based on other TPLs, with only small code changes, if their

similarity is larger than the defined threshold, ATVHUNTER

will report the reused ones at the same time, which are false

positives. (2) Artifact id or group id changes. We identify a

TPL by using its group id, artifact id and version number.

However, we find that some old version TPLs has migrated to

the new ones, with their group id or artifact id changed, but

their code has little difference. Take the TPL file “EventBus”

as an example, “org.greenrobot:eventbus” [64] is the upgraded

version of “de.greenrobot:eventbus” [65]. The code of these

two TPLs have high similarity but with different group ids.

ATVHu n t e r matches both of them and considers they are

different TPLs. (3) Different versions with high similarity. The

other reason for the false positives of ATVHu n t e r is that

some versions of the same TPL have little or no difference in

their code. For example, “ACRA_4.8.3” only modifies a few

statements in a method of “ACRA_4.8.2”, and ATVHUNTER

1701

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:56 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Library and Version Detection Comparison

Tools
Library-level Version-level

Precision Recall F I Precision Recall F I

A TV H unter 98.58% 88.79% 93.43% 90.55% 87.16% 88.82%

LibID 98.12% 68.45% 80.64% 68.70% 66.42% 67.54%

LibScout 97.10% 46.65% 63.02% 44.82% 43.50% 44.15%

O SSPoLIC E 97.91% 43.39% 60.13% 88.83% 42.25% 57.26%

L ibPecker 93.16% 57.82% 71.35% 60.35% 57.67% 58.98%

would report the two versions of the TPL at the same time,
one of them is regarded as false positives. In our database, we

even find some versions of the same TPL have the same Java

code but different resource files, configuration files or native

code (C/C++), but this situation does not affect the vulnerable

TPL identification process.
As for the false positives of other tools, the code feature

of LibScout (i.e., fuzzy method signature) is too coarse,
which would make it generate the same signature for different
versions if the two versions have minor differences. As the

aforementioned example “ACRA”, all existing tools cannot
distinguish the two versions because it generates the same

signature for them. Besides, if the methods are very simple, the

signatures generated by LibScout and OSSPoLICE would also

be the same, which can also lead to false positives. LibPecker

depends on the package structure as a supplementary feature

to identify different TPLs, they may report a TPL depend on

others TPLs several times. For instance, if an app use the

Library C that is built on library A and B, if library A and

B are also in TPL feature database, LibPecker could report
library C as library A and B, leading to false positives.
FN Analysis. ATVHunter aims to find TPL versions with

high precision, thus, we sacrificed part of the recall when we

select the similarity threshold. The reasons for false negatives
of ATVHunter are as follows: (1) When compiling an app,
developers may take some optimizations to reduce the size

of their app. The strategy is that the compiler automatically

removes some functions of TPLs that are not called by

host apps, which causes the in-app TPLs to be different
from the original TPLs, leading to false negatives. (2) Some

TPLs are integrated into the same package namespace of the

host app, which may be deleted at the pre-processing stage,
leading to false negatives. For example, some companies and

organizations develop their own Ad SDK, whose package

name is the same as that of the host app. However, the code

under the package structure of the host app is deleted at
the pre-processing stage, i.e., the ad library is also deleted

without further consideration, causing the false negatives.
(3) Another reason is that some apps use rarely-used open-
source TPLs hosted on open-source platforms (e.g., Github

or Bitbucket) which are not in our TPL database (with over

3 million TPLs), leading to false negatives. For example,
the TPLs “com.github.DASAR.ShiftColorPicker”, “android-
retention-magic-1.2.2”, and “android-json-rpc-0.3.4” are de-
veloped and hosted on Github, and not in our dataset, there-
fore, ATVHunter cannot find this TPL. Since other tools

also use the similarity comparison method to find in-app TPLs,
this situation also may affect their recall.

As for the false negatives of other TPL detection tools, they

more or less use the package structure to generate the TPL

features. However, the package structure is not stable, which

can be easily changed by the package flattening obfuscation.
We find the packages structures of many real-world in-app

TPLs are more or less obfuscated, and some TPLs are even

without any package structure; current tools cannot handle

such cases, leading to false negatives. Besides, it is difficult to

use the package structure and package name to ensure the TPL

candidates, lingas demonstrated in §ni-A4. Many different
TPLs may have the same package name, and one independent
package tree could include several TPLs; therefore, existing

tools may generate incorrect code features for these TPLs,
which also can lead to false negatives. LibID uses Dex2jar [32]
to decompile apps, it does not always work in all apps,
which discounts the recall of LibID. Besides, LibScout and

OSSPoLICE are sensitive to CFG structure modification.
Compared with them, our CFG adjacency list is less sen-

sitive to the CFG structure modification. We consider both

the syntax and semantic information, and our method adopts
the fuzzy hash to generate the TPL fingerprints. Thus, code

statements modification can only affect part of the fingerprints,
which is more robust to different code obfuscations. Based on

the above analysis, we can find that the strategy of feature

selection, extraction, and generation are essential, which can

directly affect the performance of the system.
Conclusion: ATVHunter outperforms state-of-the-art
TPL detection tools, achieving 98.58% precision, 88.79%

recall at library level, and 90.55% precision, 87.16% recall
at version level.

C. RQ2: Efficiency Evaluation

In this section, we investigate the detection time of
ATVHu n t e r and compare it with state-of-the-art tools to

verify its efficiency. We compare the detection time of
ATVHu n t e r with existing tools by employing the dataset
collected in § IV-A. All tools construct their own TPL

databases using the same dataset (6,819 TPL versions). All
compared tools choose similarity comparison method to find

in-app TPLs, thus, the detection time mainly depends on the

number of in-app TPLs and the number of TPL features in the

database. The detection time is the period cost for finding all
TPL-Vs in a test app. Note that the detection time does not
include the database construction time.
Result: Table II shows the comparison result of detection

time. We present four metrics (i.e., Q l, mean, median, Q3)
to evaluate the efficiency of each tool. We can see that the

efficiency of ATVHunter also outperforms the state-of-the-
art tools (66.24s per app on average). The second one is

LibScout, and the average detection time is about 83s. LibID

and LibPecker are relatively time-consuming; the average

detection time could reach about 16.56h and 4.5h per app.
ATVHunter is more efficient than others because our

method only needs to directly search to find the matching
pairs in most situations, which can dramatically decrease
the detection time. ATVHunter employs a two-stage iden�
tification method (i.e., filter the potential TPLs first and

1702

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:56 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Comparison Results o f Detection Time (per app).

Tool A T V H un ter L ib ID L ibS cou t O S S P oL IC E L ib P eck e r

Q1 15.92s 51.43s 30s 33.48s 12168s

M ean 66.24s 59616s 83s 2052.34s 16396s

M ed ian 47.78s 9286s 64s 80.42s 16632s

Q 3 90.30s 38300s 100s 226.60s 23292s

identify the exact TPL with its specific version) to find the

matched libraries from the database, which does not need to

directly compare with the whole database using fine-grained

features and largely reduces the comparison time and the

whole detection time. In contrast, in the similarity feature

comparison stage, LibScout needs to use the class dependency

to filter some impossible pairs out, and this step is also time-
consuming. Besides, LibScout regards the code of the host
app as one of the candidate TPLs, which also costs extra

time. OSSPoLICS exploits the fuzzy method signature (the

same feature of LibScout) [5] as the TPL code feature and

function centroid [42] as the version code feature. The feature

granularity of OSSPoLICE is much finer than that of LibScout,
thus, the computational complexity of OSSPoLICE is also

greater than that of LibScout. Besides, calculating centroid is

heavy in terms of runtime overhead and computing resources
consumption, especially for the third element (loop depth) in

the centroid. The time complexity is 0 ((n + e)(c + l)) and the

space complexity is 0 (n + e) to find all the loops, where there

are n nodes, e edges and c elementary circles in the graph.
For LibPecker, if it tries to find a similar class, it needs to

compare three times while our method only needs to compare

once. Besides, LibPecker also needs to compare the package

hierarchy structure and then calculates the similarity score,
which also adds extra time. LibID chooses finer granularity

features to identify TPLs, the class dependency analysis, CFG

construction and class matching are also time-consuming.
Conclusion: Compared with other tools, ATVHunter can
identify exact TPL-Vs with high efficiency and it takes less
time for TPL detection on the ground-truth TPL database.

D. RQ3: Obfuscation-resilient Capability

The obfuscation-resilient capability is an important index to

measure the performance of a TPL detection tool since obfus-
cation techniques can discount the detection performance.
Experimental Setup. To evaluate the obfuscation-resilient
capability of ATVHunter regarding different obfuscation

techniques, we select 100 apps from the public dataset [66]
including multiple categories, and use a popular obfuscation

tool, Dasho [22], to obfuscate these apks with four widely-used

obfuscation techniques (i.e., renaming obfuscation, control
flow randomization, package flattening and dead code re-
moval). Obfuscation is a time-consuming task and requires the

obfuscation tool to analyze the code logic in order to conduct
the obfuscation. It took us about half a month to obfuscate all
of apps. Finally, we get one group (100 apps) of the original
apps and four groups (100 x 4) of the obfuscated apps. Based

on these groups of apps, we compare ATVHunter with other

tools in terms of the detection rate (jg ^) at version-level.

TABLE HI: Comparison on Code Obfuscation Techniques

Tool
No

O bfuscation

O bfuscation

R enam ing C FR P K G FLT Code RM V

A TV H unter 99.26% 99.26% 90.13% 99.26% 75.57%

LibID 12.93% 12.93% 0.03% 1.58% 2.49%

LibScout 88.75% 88.75% 18.24% 17.69% 17.69%

O SSPoLIC E 85.62% 85.62% 23.04% 39.52% 48.86%

L ibPecker 98.79% 98.79% 86.63% 73.56% 79.28%

Renaming: renaming obfuscation; CFR: Control Flow

Randomization; PKG FLT; Package Flattening; Code RMV: Dead

Code Removal

Result: The detection results are presented in Table in,
the second column is the detection rate of each tool on

apps without obfuscation. We can see ATVHunter achieves
the highest detection rate (99.26%), followed by LibPecker

(98.79%). Besides, it can be found that the detection rate of
LibID is only 12.93%, which has a big gap with the result
in RQ1. We found the main cause of this gap is due to the

inability of decompilation component dex2jar used by LibID.
Many apps in this dataset cannot be decompiled successfully

by dex2jar because of TPL compatibility issues, type errors
and anti-decompilation settings, hence LibID cannot generate

the in-app TPL signature, leading to the low detection rate.

As for the capability of tools on obfuscated apps, we can

see that all tools are resilient to renaming obfuscation since

the detection rate of all tools on renaming apps is the same

as the apps without obfuscation. Our ATVHunter is less

affected by all of these code obfuscation techniques. Code

removal has the greatest impact on ATVHunter, detection

rate dropped by about 24%. The detection rate on apps with

other obfuscation techniques remains over 90%, demonstrating

the capability of ATVHunter towards commonly-used code

obfuscation techniques. Moreover, we can find the recall of
apps are obfuscated by package flattening is the same with

the apps without obfuscation, it shows that our method is

completely resilient to package flattening. In contrast, apart
from the renaming obfuscation, the detection rate of other

tools has been affected by obfuscations to varying degrees.
Especially for LibScout, the performance has dropped by

more than 70%. LibScout can only correctly identify 17.69%

of in-app TPLs that are obfuscated by package flattening

or dead code removal, and 18.24% of in-app TPLs with

control flow randomization. Except ATVHunter, LibPecker

achieves better performance.

As for the control flow randomization (CFR), LibScout and

OSSPoLICE use the fuzzy method signature as code features
that keep the syntax information but do not remain semantic

information; thus, it is difficult to defend against CFR. Besides,
OSSPoLICE employs CFG centroid [42] as the version-level
code feature. The CFG centroid is a three-dimensional vector,
and each dimension indicates the in-degree, out-degree and

loop count, respectively. The CFG centroid is sensitive to CFG

structure modification; hence the detection rate of OSSPoLICE

has dropped a lot regarding apps with CFR. LibPecker and

LibID show a good resiliency to CFR because both of them

select the class dependencies as the code features that would

1703

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:56 UTC from IEEE Xplore. Restrictions apply.

not be changed easily by CFR. ATVHunter extracts CFG

as our coarse-grained feature and opcode in the basic block

of CFG as the fine-grained feature. We keep the semantic

information and remove the operands so our method is resilient
to identifier renaming. We split the opcode sequence into

small pieces and exploit fuzzy hash generate the code feature,
although the dead code removal obfuscation and control flow

obfuscation techniques can affect a part of code features,
our strategy effectively reduces the interference, making the

detection rate decline slightly.
Regarding the package flattening technique, existing tools

more or less depend on package structure to generate TPL sig-
natures, without a doubt, which will affect their performance.
More specifically, LibScout depends on package structure/-
name to split TPLs. Firstly, many TPLs belong to the same

group that may have the same package name. It is difficult to

split these TPLs correctly if they belong to the same group.
Secondly, the package flattening technique can easily change

the package hierarchy structure or even remove the whole

package tree, resulting in that LibScout will generate incorrect
TPL signatures or cannot generate signatures for TPLs without
package structures. OSSPoLICE is built on LibScout hence

OSSPoLICE inherits the limitations of LibScout. LibPecker

assumes the package structure is preserved during obfuscation

but it does not always hold true for real-world apps. This
strong assumption directly restricts it to achieve better perfor-
mance. In contrast,ATVHunter uses the class dependency

relation to split different TPL candidates (on the basis of
high cohesion and low coupling among different TPLs), which

completely does not depend on the package structure, thus,
ATVHunter is resilient to package flattening/renaming.

As for dead code removal, this obfuscation technique will
delete some code that is not invoked by host apps, leading the

code features of in-app TPLs are different from the original
TPLs. This obfuscation can affect all TPL detection tools.
LibPecker chooses class dependency as the code feature that
keeps the method call relationship while we adopt CFG as
code feature that do not include the method dependency. Our

method may include methods and classes without invocations.
The signature of LibPecker stores more semantic information

than that of us so that LibPecker achieves better performance

in dead code removal.

Conclusion: ATVHunter offers better resiliency to code
obfuscation than existing tools, especially for identifier re�
naming, package flattening, and control flow randomization.

V. Large-Scale Analysis

By leveraging ATVHunter, we further conducted a large
scale study on Google Play apps to reveal the threats of
vulnerable TPL-Vs in the real world.
Dataset Collection. We collected commercial Android apps
from Google Play based on the number of installations. For

each installation range, we crawled the latest versions of apps
from Aug. 2019 to Feb. 2020 for this large-scale experiment.
We only consider popular apps whose installation ranges from

10,000 to 5 billion, because the vulnerabilities in apps with

large installations can affect more devices and users. Note that
the number of apps in each installation range is unequal; in

general, the number of apps with higher installations usually is

relatively smaller. We finally collected 104,446 apps across 33

different categories as the study subjects. From our preliminary

study on these apps, we found 72% of them (73,110/104,446)
use TPLs to facilitate their development. We thus focus on the

73,110 apps to conduct the following analysis.

A. Vulnerable TPL Landscape
Before conducting the impact analysis of vulnerable TPLs,

we first present some essential information about these vulner-
able TPL-Vs to let readers have a clear understanding about
the threats in TPLs. We use CVSS v3.0 security metrics [53]
to indicate the severity (i.e., low, medium, high, and criti-
cal) of vulnerabilities. The score greater than 7.0 means the

vulnerability with high and critical severity, which accounts
for 21.35% of all the vulnerabilities in our dataset. These

severe vulnerabilities usually involve remote code execution,
sensitive data leakage, Server-side request forgery (SSRF)
attack, etc. Even worse, we find 74.95% of these vulnerable

TPLs are widely-used by other TPLs. For example, the li-
brary “org.scala-lang:scala-library” with a severe security risk

(C V S S = 9.8) that allows local users to write arbitrary class

files, has been used 24,112 times by other TPLs, and most
of vulnerable versions of this TPL have been used more

than 2,000 times. Without a doubt, such cases expand the

spread of vulnerabilities and add more security risks to app

users. These severe vulnerabilities usually involve remote code

execution, sensitive data leakage [67, 68], malicious code or

SQL injection, bypass certificates/authentication, etc. These

behaviors definitely bring unpredictable risks to users’ privacy

and property security. We found that most of these vulnerable

TPLs belong to utility, accounting for 98.7%.

B. Impact Analysis o f Vulnerable TPLs
In our dataset, we find that about 12.37% (9,050/73,110)

of apps include TPL-Vs, involving 53,337 known vulnera-
bilities and 7,480 security bugs from open-source TPLs. The

known vulnerabilities are from 166 different vulnerable TPLs
with corresponding 10,362 versions and the security bugs
are from 27 vulnerable TPLs with 284 different versions.
These vulnerable apps use a total of 58,330 TPLs and ap-
proximately 18.2% of them are vulnerable ones. Among the

9,050 vulnerable apps, 329 apps (37.5%) with TPLs contain

both vulnerabilities and security bugs. There are 778 apps
containing the TPLs with security bugs and each app contains
about 2.45 security bugs in their TPLs. Furthermore, we

also find many education and financial apps use the popular

UI library “PrimeFaces” [69] that include sever vulnerability

(CVE-2017-1000486). Primefaces 5.x is vulnerable to a weak

encryption flaw resulting in remote code execution. For more

analysis result, you can refer to our website [26].

C. Lessons Learned
Based on our analysis, we found many apps include vul-

nerable TPLs leading to privacy leakage and financial loss.

1704

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:56 UTC from IEEE Xplore. Restrictions apply.

However, developers seem unaware of the security risks of
TPLs. We explore the reasons from the following points:
For TPL developers, according to our result in § V-A, the

reuse rate of vulnerable TPLs is pretty high (> 75%). Many

TPL developers also develop their own TPLs based on existing

ones, especially popular ones, but seem seldom to check the

used components for any known vulnerabilities. Even worse,
we find 210,727 TPLs use vulnerable TPL versions, indicating

many TPL developers may be unaware of tracking these

vulnerability fix solutions in these open-source products. Al-
though some TPL developers have patched the vulnerabilities
in later versions, many affected apps still use the old versions

with vulnerabilities, which indirectly expands the threats of
the vulnerabilities in TPLs. The lack of centralized control of
these open-source TPLs also poses attack surfaces for hackers.
For app developers, we reported some TPL versions with

severe vulnerabilities to the corresponding app developers
via emails. We wrote 50 emails to these app developers or

companies and received 5 replies in 2 months. Based on then-
feedback, we find 1) most of the developers only care about
the functionalities provided by the TPLs and are unaware of
the security problems in these TPLs. In fact, it is reasonable

since one is unlikely to analyze all the used libraries before

using them, which eliminates the convenience of using these

components or libraries. However, based on our analysis,
some commonly-used TPLs contain severe vulnerabilities, we

suggest that app developers should be aware of vulnerabilities

in TPLs and ATVHunter could be helpful for them to

detect vulnerable TPL versions. 2) Some app developers or

companies do not know how to conduct security detection

of these imported TPLs. They also hope “our team can help

them conduct the security assessment of the used TPLs or tell
them the specific analysis processes.” 3) Some app developers
did not know that some vulnerable TPLs have been updated

or patched and they still used these old TPL versions. Even if

they noticed the upgraded versions, some of them are reluctant
to change the old ones due to the extra cost. They said that
“If a TPL adds many new functions, they have to spend much

time understanding these new features and change too much

of their own code. Thus, they prefer to keep old TPL-Vs.”

For app markets, we found that many app markets do not
have such a security assessment mechanism to warn developers
about the potential security risks in their apps. As far as we

know, only Google provides a service named App Security

Improvement (ASI) program that provides tips to help app

developers of Google Play to improve the security of their

apps. Previous research [6] reported that vulnerabilities fisted

on ASI program could draw more attention from developers.
However, the vulnerabilities reported by ASI program are lim-
ited due to the lack of a comprehensive vulnerability database

and such a vulnerable TPL detection tool, like ATVHunter.

VI. Discussion

Limitations. (1) If the Java code of several versions is

the same, ATVHunter would provide several candidates
instead of a specific one, leading to some false positives. (2)

ATVHunter may eliminate some TPLs due to mistakenly

regarding them as part of the primary module if such TPLs
are imported into the package structure of the host app,
thus causing some false negatives. (3) We only focus on

the Java libraries and do not consider the native libraries. In

fact, the native library is also an essential part in Android

apps and the vulnerabilities inside would cause more severe

consequences. Detecting vulnerable native libraries is left for

our future work. (4)ATVHunter adopts static analysis to

find the TPLs, therefore, we may miss some libraries are

loaded in dynamic methods. Besides, some TPLs have some

dynamic behaviors, such as refection, dynamic class loading.
Our approach may miss some dynamic features and affect
our detection performance. (5) We crawled about 3 million

TPLs from maven to build our feature database. Although this
database is large and comprehensive and it can guarantee the

detection rate of ATVHunter, our method still have some

limitations. The third-party libraries are constantly updating,
which means ATVHunter cannot find these newly emerging

TPLs. Thus, how to find these newly emerging TPLs and

dynamically maintain our database will be our future work.
Threats to Validity. (1) The first threat comes from the

similarity threshold, it is inevitable to induce some false

negatives and false positives for some apps due to the minor

difference between TPLs. To minimize the threat, we selected

the similarity threshold through a reasonable experimental
design. (2) Another threat comes from the analysis on only free

apps. We believe that it is meaningful to study the vulnerable

TPLs used by both free and paid apps, which is left for future

work.

VII. Conclusion
In this paper, we proposed ATVHunter, a TPL detection

system which can precisely pinpoint the TPL version and

find the vulnerable TPLs used by the apps. Evaluation results
show that ATVHunter can effectively and efficiently find

in-app TPLs and is resilient to the state-of-the-art obfuscation

techniques. Meanwhile, we construct a comprehensive and

large vulnerable TPL version database containing 224 security

bugs and 1,180 CVEs. ATVHunter can find the vulnerable

TPLs in apps and reveals the threat of vulnerable TPLs in apps,
which can help improve the quality of apps and has profound

impact on the Android ecosystem.

VIII. Acknowledgment
We thank the anonymous reviewers for their helpful com-

ments. This work is partly supported by the National Re-
search Foundation, Prime Ministers Office, Singapore un-
der its National Cybersecurity R&D Program (Award No.
NRF2018NCR-NCR005-0001), the Singapore National Re-
search Foundation under NCR Award Number NRF2018NCR-
NSOE003-0001, NRF Investigatorship NRFI06-2020-0022,
the Singapore National Research Foundation under NCR

Award Number NRF2018NCR-NSOE004-0001, the Hong

Kong PhD Fellowship Scheme and Hong Kong RGC Projects
(No. 152223/17E,152239/18E, CityU C1008-16G).

1705

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:56 UTC from IEEE Xplore. Restrictions apply.

References
[1] “Statista,” https://www.statista.com/statistics/266210/number-

of-available-applications-in-the-google-play-store/, 2019.
[2] C. Tang, S. Chen, L. Fan, L. Xu, Y. Liu, Z. Tang, and L. Dou,

“A large-scale empirical study on industrial fake apps,” in

Proceedings o f the 41st International Conference on Software

Engineering: Software Engineering in Practice. IEEE Press,

2019, pp. 183-192.

[3] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and

B. Li, “Automated poisoning attacks and defenses in malware

detection systems: An adversarial machine learning approach,”

computers & security, vol. 73, pp. 326-344, 2018.

[4] S. Chen, L. Fan, C. Chen, M. Xue, Y. Liu, and L. Xu, “Gui-

squatting attack: Automated generation of android phishing

apps,” IEEE Transactions on Dependable and Secure Comput-
ing, 2019.

[5] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library

detection in Android and its security applications,” in CCS,
2016.

[6] T. Yasumatsu, T. Watanabe, F. Kanei, E. Shioji, M. Akiyama,

and T. Mori, “Understanding the responsiveness of mobile app

developers to software library updates,” in Proc. CODASPY,
2019.

[7] Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang, and

H. Chen, “Detecting third-party libraries in Android applications

with high precision and recall,” in SANER, 2018.

[8] L. Li, D. Li, T. F. Bissyande, J. Klein, H. Cai, D. Lo, and

Y. Le Traon, “Automatically locating malicious packages in

piggybacked Android apps,” in The 4th 1EEEJACM Interna-
tional Conference on Mobile Software Engineering and Systems

(MobileSoft 2017), 2017.

[9] “Airpush,” https://support.google.com/faqs/answer/6376737.

[10] “Mopub,” https://support.google.com/faqs/answer/6345928.

[11] (2016) App security improvement program. [Online]. Available:
https://developer.android.com/google/play/asi.html

[12] “Software composition analysis (SCA): what is it and does

your company need it?” https://snyk.io/blog/what-is-software-

composition-analysis-sca-and-does-my-company-need-it/, 2020.

[13] (2020) Software Composition Analysis Explained. [On-

line]. Available: https://resources.whitesourcesoftware.com/

blog-whitesource/sca- software- composition- analysis

[14] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: Fast and

accurate detection of third-party libraries in Android apps,” in

Proc. ICSE-C, 2016.

[15] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue,

and W. Huo, “Libd: Scalable and precise third-party library

detection in Android markets,” in Proc. ICSE, 2017.

[16] M. Li, P. Wang, W. Wang, S. Wang, D. Wu, J. Liu, R. Xue,

W. Huo, and W. Zou, “Large-scale third-party library detection

in Android markets,” IEEE Transactions on Software Engineer-
ing, pp. 1-1, 2018.

[17] J. Zhang, A. R. Beresford, and S. A. Kollmann, “Libid: Reliable

identification of obfuscated third-party Android libraries,” in

Pwc. ISSTA, 2019.

[18] X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo,

and Y. Liu, “Automated third-party library detection for android

applications: Are we there yet?” in ASE, 2020.

[19] A. Narayanan, L. Chen, and C. K. Chan, “Addetect: Automated

detection of Android ad libraries using semantic analysis,” in

Proc. ISSNIP, 2014.

[20] Y. Wang, H. Wu, H. Zhang, and A. Rountev, “Orlis:

Obfuscation-resilient library detection for Android,” in Proc.
MOBILESoft, 2018.

[21] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying

open-source license violation and 1-day security risk at large

scale,” in Proc. CCS, 2017.
[22] “DashO,” https://www.preemptive.com/products/dasho/overview.

[23] Proguard. [Online]. Available: https://www.guardsquare.com/

en/products/proguard

[24] “Allatori,” http://www.allatori.com/.

[25] “Maven Repository,” https://mvnrepository.com/.

[26] (2020) Atvhunter. [Online]. Available: https://sites.google.com/

view/atvhunter/

[27] B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient privilege

de-escalation for ad libraries in mobile apps,” in Proceedings

o f the 13th annual international conference on mobile systems,
applications, and services. ACM, 2015, pp. 89-103.

[28] Z. Zhang, W. Diao, C. Hu, S. Guo, C. Zuo, and L. Li, “An

empirical study of potentially malicious third-party libraries in

Android apps,” in Proc. WiSec, 2020.

[29] C. Soh, H. B. K. Tan, Y. L. Amatovich, A. Narayanan, and

L. Wang, “Libsift: Automated detection of third-party libraries

in Android applications,” in APSEC, 2016.

[30] H. Han, R. Li, and J. Tang, “Identify and inspect libraries in

Android applications,” Wireless Personal Communications vol
103, pp491-503, 2018.

[31] Merkle Tree. [Online]. Available: https://en.wikipedia.org/wiki/

Merkle_tree

[32] “dex2jar,” https://github.com/pxbl988/dex2jar.

[33] C. Kai, W. Peng, L. Yeonjoon, W. XiaoFeng, Z. Nan, H. Heqing,

Z. Wei, and L. Peng, “Finding unknown malice in 10 seconds:

Mass vetting for new threats at the google-play scale,” in Proc.
USENIX Security, 2015.

[34] “National vulnerability database,” https://nvd.nist.gov/.

[35] “Github,” https://github.com/.

[36] Package Flattening. [Online], Available:

https://www.preemptive.com/dasho/pro/userguide/en/

understanding_obfuscation_renaming.html

[37] appcompat-V7. [Online]. Available: https://mvnrepository.com/

artifact/com.android.support/appcompat-v7

[38] support design. [Online]. Available: https://mvnrepository.com/

artifact/com.android.support/design

[39] (2014) Netty4 Sever. [Online]. Available: https://mvnrepository.

com/artifact/com.orange.redis-protocol/netty 4-server

[40] (2017) Java Packagaing techniques. [Online], Available: https:
//dzone.com/articles/the-skinny-on-fat-thin-hollow-and-uber

[41] “Control flow obfuscation for Android applications,” Comput.
Secur., vol. 61, pp. 72-93, Aug. 2016.

[42] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and

scalability simultaneously in detecting application clones on

Android markets,” in Proc. ICSE, 2014.

[43] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged

smartphone applications in third-party Android marketplaces,”

in Proc. CODASPY, 2012.

[44] D. Hurlbut., “Fuzzy hashing for digital forensic investigators,

technical report,,” Access Data Inc., Tech. Rep., 2011.

[45] “Code Obfuscation,” 2020. [Online], Available: https://www.
preemptive.com/dasho/pro/userguide/en/index.html

[46] “Mongodb,” https://docs.mongodb.com/, 2018.

[47] (2017-2020) Android support group library. [Online], Available:

https://mvnrepository.com/artifact/com.android.support

[48] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “Viewdroid:

Towards obfuscation-resilient mobile application repackaging

detection,” in Proc. ACM WiSec, 2014.

[49] X. Sun, Y. Zhongyang, Z. Xin, B. Mao, and L. Xie, “Detecting

code reuse in Android applications using component-based

control flow graph,” in IFIP, 2014.

[50] “Edit Distance.” [Online]. Available: https://en.wikipedia.org/

wiki/Edit_distance

[51] “CPE,” https://nvd.nist.gov/Products/CPE.

[52] “cve-search,” https://github.com/cve-search/cve-search.

[53] “Common Vulnerability Scoring System (CVSS).” [Online].

Available: https://nvd.nist.gov/vuln-metrics/cvss
[54] “BitBucket,” https://bitbucket.org/.

1706

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:56 UTC from IEEE Xplore. Restrictions apply.

[55] (2019) Apktool. [Online], Available: https://ibotpeaches.github.

io/Apktool/
[56] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and

Z. Su, “Large-scale analysis of framework-specific exceptions

in android apps,” in 2018 IEEE/ACM 40th International Con-
ference on Software Engineering (ICSE). IEEE, 2018, pp.

408-419.

[57] T. Su, L. Fan, S. Chen, Y. Liu, L. Xu, G. Pu, and Z. Su, “Why

my app crashes? understanding and benchmarking framework-

specific exceptions of android apps,” 2020.

[58] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu,

“Storydroid: Automated generation of storyboard for Android

apps,” in Proceedings o f the 41st International Conference on

Software Engineering. IEEE Press, 2019, pp. 596-607.
[59] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu,

“Efficiently manifesting asynchronous programming errors in

android apps,” in Proceedings o f the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering. ACM,

2018, pp. 486-497.

[60] “Androguard,” https://github.com/androguard/androguard.

[61] “Soot,” https://github.com/Sable/soot, 2019.
[62] “ssdeep,” https://ssdeep-project.github.io/ssdeep/index.html.

[63] “F-Droid,” https://f-droid.org/en/packages/.

[64] (2015) org.greenrobor.eventbus. [Online]. Available: https:

//mvnrepository.com/artifact/org.greenrobot/eventbus

[65] (2020) de.greenrobor.eventbus. [Online], Available: https:

//mvnrepository.com/artifact/de.greenrobot/eventbus

[66] “Benchmark data,” https://github.com/presto-osu/orlis-

orcis/tree/master/orlis/open_source_benchmarks.

[67] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu,

and L. Xu, “An empirical assessment of security risks of global

android banking apps,” in Proceedings o f the 42nd International
Conference on Software Engineering. IEEE Press, 2020, pp.

596-607.

[68] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu,

“Are mobile banking apps secure? what can be improved?” in

Proceedings o f the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foun-
dations o f Software Engineering. ACM, 2018, pp. 797-802.

[69] “Primefaces,” https://www.primefaces.org/.

1707

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:56 UTC from IEEE Xplore. Restrictions apply.

