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Abstract—Third-party libraries (TPLs) as essential parts in 
the mobile ecosystem have become one of the most significant 
contributors to the huge success of Android, which facilitate 
the fast development of Android applications. Detecting TPLs 
in Android apps is also important for downstream tasks, such 
as malware and repackaged apps identification. To identify in- 
app TPLs, we need to solve several challenges, such as TPL 
dependency, code obfuscation, precise version representation. 
Unfortunately, existing TPL detection tools have been proved 
that they have not solved these challenges very well, let alone 
specify die exact TPL versions.

To this end, we propose a system, named ATVHunter, which 
can pinpoint the precise vulnerable in-app TPL versions and 
provide detailed information about the vulnerabilities and TPLs. 
We propose a two-phase detection approach to identify specific 
TPL versions. Specifically, we extract the Control Flow Graphs as 
the coarse-grained feature to match potential TPLs in the pre-
defined TPL database, and then extract opcode in each basic 
block of CFG as the fine-grained feature to identify the exact 
TPL versions. We build a comprehensive TPL database (189,545 
unique TPLs with 3,006,676 versions) as the reference database. 
Meanwhile, to identify the vulnerable in-app TPL versions, we 
also construct a comprehensive and known vulnerable TPL 
database containing 1,180 CVEs and 224 security bugs. Exper-
imental results show ATVHunter outperforms state-of-the-art 
TPL detection tools, achieving 90.55% precision and 88.79% 
recall with high efficiency, and is also resilient to widely-used 
obfuscation techniques and scalable for large-scale TPL detection. 
Furthermore, to investigate the ecosystem of the vulnerable TPLs 
used by apps, we exploit ATVHunter to conduct a large- 
scale analysis on 104,446 apps and find that 9,050 apps include 
vulnerable TPL versions with 53,337 vulnerabilities and 7,480 
security bugs, most of which are with high risks and are not 
recognized by app developers.

I .  I n t r o d u c t io n

Nowadays, over 3 million Android applications (apps) are 

available in the official Google Play Store [1]. One reason 

contributing to the huge success of Android could be the 

massive presence of third-party libraries (TPLs) that provide 

reusable functionalities that can be leveraged by developers 
to facilitate the development of Android apps (to avoid rein-
venting the wheels). However, extensive TPL usage attracts 
attackers to exploit the vulnerabilities or inject backdoors in

the popular TPLs, which poses severe security threats to app 

users [2-4]. Previous research [5, 6] pointed out that many 

apps contain vulnerable TPLs, and some of them have been 

reported with severe vulnerabilities (e.g., Facebook SDK) that 
can be exploited by adversaries [7, 8]. Attackers can exploit 
the vulnerabilities in some Ad libraries (e.g., Airpush [9], 
MoPub [10]) to get privacy-sensitive information from the in-
fected devices [11]. Even worse, various TPLs are scattered in 

different apps but the information of TPL components in apps 
is not transparent. Many developers may not know how many 

and which TPLs are used in their apps, due to many direct 
and transitive dependencies. Additionally, about 78% of the 

vulnerabilities are detected in indirect dependencies, making 

the potential risks hard to spot [12]. Thus, vulnerable TPL 

identification has become an urgent and high-demand task and 

TPL version detection has become a standard industry product 
named as Software Composition Analysis (SCA) [12, 13].

Existing TPL detection techniques use either clustering- 
based methods (e.g., LibRadar [14], LibD [15, 16]) or sim-
ilarity comparison methods (e.g., LibID [17], LibScout [5]) to 

identify TPLs used by the apps. However, according to our 

analysis and previous study [18], we conclude the following 

deficiencies in existing approaches: 1) Low recall. Clustering- 
based methods only can identity commonly-used TPLs and 

may miss some niche and new TPLs, whose recall depends on 

the number of input apps and the reuse rate of TPLs. Besides, 
the code similarity of different versions and TPL could be vari-
ous, which makes it difficult to choose appropriate parameters 
of the clustering algorithm to perfectly distinguish different 
TPLs or even versions. Verifying the clustering results is 

also labor-intensive and error-prone. Similarity comparison 

methods construct a predefined TPL database as the reference 

database. However, current published size of TPL database 

is far smaller than the number of TPLs in the actual market 
thus cannot be used to identify a complete set of in-app TPLs. 
Apart from that, existing techniques more or less depend on 

the package structure, especially using package structure to 

construct the in-app library candidates. Whereas, the package 

structure/name of the same TPL in different versions could
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be mutant or easily obfuscated. Therefore, using packages as 
a supplementary feature to generate TPL signatures is also 

unreliable [18]. 2) Inability of precise version identification. 
To find the vulnerabilities of the in-app TPLs, we need to 

precisely pinpoint the exact TPL versions because not all 
TPL versions are vulnerable. Even though there are many 

TPL detection tools, none of them can meet our requirements. 
AdDetect [19] just can distinguish the ad and non-ad libraries. 
ORLIS [20] just provides the matching class. Clustering- 
based tools (e.g., LibRadar [14], LibD [15, 16]) do not claim 

they can pinpoint the exact TPL versions. Besides, current 
tools [5, 7, 17, 21] usually reported many false positives at 
version-level identification [18]. Thus, existing tools are not 
suitable for vulnerable TPL detection.

Apart from the aforementioned weaknesses of existing 

tools, we still face some challenges in this research direction: 
1) Lack of vulnerable TPL version dataset. To enable 
vulnerable TPL version (TPL-V) identification, we need a 

comprehensive set of known vulnerable TPL-Vs. Ideally, for 

each vulnerable TPL, it includes TPL names, versions, types, 
vulnerability severity, etc. However, to the best of our knowl-
edge, no such dataset is publicly available. 2) Precise version 

representation. We need to distinguish TPLs at version level, 
however, it is challenging to extract appropriate code features 
to represent different versions of the same TPL, especially 

when the code difference of different versions is tiny. 3) 
Interference from code obfuscation. Many code obfuscation 

tools (e.g., DashO [22], Proguard [23], and Allatori [24]) can 

be used to obfuscate apps and TPLs. For example, dead code 

removal can delete the code without invocation by host apps. 
These techniques can change the code similarity between in- 
app TPLs and the original TPLs. Undoubtedly, obfuscation 

techniques increase the difficulty of TPL identification.
To fill aforementioned research gap, we propose a sys-

tem, named ATVHunter (Android in-app Third-party library 
Vulnerability Hunter), which is an obfuscation-resilient TPL- 
V detection tool and can report detailed information about 
vulnerabilities of in-app TPLs. ATVHunter first uses class 
dependency relations to split the independent candidate TPL 

modules from the host app and adopts a two-phase strategy to 

identify in-app TPLs. It extracts CFGs as the coarse-grained 

features to locate the potential TPLs in the feature database to 

achieve high efficiency. It then extracts the opcode sequence in 

each basic block of CFG as the fine-grained feature to identify 

the precise version by employing the similarity comparison 

method. To ensure the recall, we constructed our TPL feature 
database by collecting comprehensive and large-scale Java 

libraries from the maven repository [25]. We use the fuzzy 

hash method to generate the signature, which can alleviate 

the effects from code obfuscation. Compared with previous 
methods, ATVHunter does not depend on the package 

structure. The main contributions of this work are as follows: 
• An effective TPL version detection tool. We propose 

ATVHunter, an obfuscation-resilient TPL-V detection 

tool with high accuracy that can find vulnerable in-app 

TPL-Vs and provide detailed vulnerabilities and compo-

nents reports. With the help of our industry collaborator, 
ATVHunter was integrated as a branch of an online 

service1 to help users identify vulnerable Android TPLs.
■ Comprehensive datasets. We have constructed a com-

prehensive and large-scale TPL feature database at 
present, which includes 189,545 TPLs with corresponding 

3,006,676 versions to identify in-app TPLs. We are the first 
to construct a comprehensive vulnerable TPL-V database 

for Android apps, including 1,180 CVEs from 957 TPLs 
with 38,243 vulnerable versions and 224 security bugs 
from 152 open-source TPLs with 4,533 affected versions.

■ Thorough comparisons. We conduct systematic and thor-
ough comparisons between ATVHunter and the state- 
of-the-art tools from different perspectives. The evaluation 
result demonstrates ATVHunter is resilient to widely- 
used obfuscation techniques and outperforms the state-of- 
the-art TPL-V detection tools, achieving high precision 

(90.55%) and recall (88.79%) at version-level identifica-
tion. We published the related dataset on our website [26],

■ Large-scale analysis. We leverage ATVHunter to con-
duct a large-scale study on 73,110 apps using TPLs and 

find 9,050 apps contain 10,616 vulnerable TPLs. These 
vulnerable TPLs include 53,337 known vulnerabilities and 

7,480 security bugs. Most of them use TPLs containing 

severe vulnerabilities.

II. Related W ork

Library Detection. AdDetect [19] and PEDAL [27] use 
features such as permissions and APIs to train a classifier to 

distinguish ad libraries and non-ad libraries. Whereas, these 

studies fail to identify other types of libraries, such as develop-
ment aids, UI plugins. Currently, there are three TPL detection 

tools based on the clustering algorithms., i.e., LibRadar, LibD, 
and LibExtractor. LibRadar [14] extracts the Android API 
calls, the total number of API calls and total kinds of API 
calls as the code features and it chooses the multi-level 
clustering method to identify potential TPLs. LibD [15, 16] 
extracts the opcode in each CFG block as the code feature. 
LibExtractor [28] exploits the clustering-based method to 

find potential malicious libraries. In general, clustering-based 

approaches have three common weaknesses: 1) they require 

a considerable number of apps as input to generate enough 

TPL signatures. It is also difficult to find emerging or niche 

TPLs. It also can import some impurities. For instance, if 
an app is repackaged many times, clustering methods may 

consider the repackaged host app as a TPL. 2) clustering-based 
methods may find incomplete TPLs. Some TPLs also depend 

on other TPLs, but clustering method could separate them into 

several parts. 3) The above clustering-based approaches more 

or less rely on package names and package structures, which 

can be easily obfuscated by existing obfuscators [22-24]. 
LibD claims it is resilient to package name obfuscation and 

package structure mutation, but package flattening technique 

can remove the whole package structure and change the

1 w w w .s c a n t i s t . i o
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internal package structure. LibSift [29] constructs the package 

dependency graph (PDG) to split independent TPL candidates. 
LibSift does not identify specific libraries, only decouples 
TPLs into different parts from the host app. Han et al. [30] 
aim to measure the behavior differences by comparing benign 
TPLs and malicious TPLs. It extracts the opcode and Android 

type tags as features and hashes all feature in each method, and 

then compare it with the ground-truth libraries to identify the 

libraries. LibScout [5] is a similarity-based library detection 

tool, which uses the Merkle Tree [31] to generate each library 

instance signature. LibScout chooses the fuzzy method as 
code feature which changes the non-system identifiers (in the 

method signature) by using placeholder “X”. ORLIS [20] uses 
the same code feature of LibScout [5] but different feature 
generation approach. LibScout and ORLIS can be resilient to 

identifier renaming. Whereas, the code feature of LibScout is 

too coarse, which affects the detection performance. Besides, 
ORLIS can only provide the matched class to users, which is 

not user-friendly. Thus, they are not good choices for off-the- 
shelf TPL detection. LibPecker [7] is also a matching-based 

library identification tool, which exploits the class dependency 

as the code features and hashes it as the fingerprint to find 
TPLs. LibPecker then uses the Fuzzy Class matching method 

to compare it with the libraries in the database. However, the 

comparison process is time-consuming. Moreover, LibPecker 

also assumes the package hierarchy is not change when the 

TPL is imported into an app, which will affect the recall. 
LibID [17] is also a TPL version detection tool, but it chooses 
dex2jar [32] as the decompile tool. The reverse-engineering 

capability of dex2jar directly limits the detection ability of 
LibID. More details are clarified in § IV.
Vulnerable TPL/App Identification. Yasumatsu et al. [6] 
attempt to understand how app developers response to the 

update of TPLs. They studied vulnerable versions of seven 
TPLs and corresponding apps. By comparing the evolution 

time between different TPL-Vs and apps versions, they mea-
sured the reaction of app developers to these vulnerable TPL 

versions. The number of vulnerable TPL is too small in their 

dataset, which cannot show the full picture of the infected apps 
and vulnerable TPLs. OSSPolice [21] is an automated tool 
for identifying free software license violations and vulnerable 

versions of open-source third-party libraries, including both 

native libraries and Java libraries. It extracts the fuzzy method 

signature as the library feature and function centroid [33] as 
the version feature to identify TPL-Vs. However, generating 
centroid is substantial in terms of resource consumption.

III. Architecture

We design a system, ATVHunter, which takes an Android 

app as input, and automatically identify the used vulnerable 

TPL-Vs (if any) according to the constructed database. Fig. 1 
shows the system design which is divided into two parts: (1) 
TPL-V detection, which identifies the specific versions of TPLs 
used by apps; and (2) vulnerable TPL-V identification, which 

can identify the vulnerable in-app TPL-Vs based on our col-
lected known vulnerabilities from NVD [34] and Github [35].

Based on the database, we also conduct a large-scale study to 

assess the ecosystem of Android apps in terms of the usage 

of vulnerable TPLs. Details are introduced as follows.

A. TPL Detection

The TPL detection part of ATVHu n t e r  includes four key 

phases: (1) Preprocessing, (2) Module decoupling, (3) Feature 

generation, and (4) TPL identification.
1) Preprocessing: ATVHunter primarily conducts two 

tasks in this phase. The first task is to decompile the input 
app and transform the bytecode into appropriate intermediate 

representations (IRs). The second task is to find the primary 

module in the app and delete it to eliminate the interference 

from the host app. If an app includes TPLs, we call the 

code of the host app as the “primary” module and the in- 
app TPLs constitute the “non-primary” module. ATVHunter 
first parses the AndroidManifest.xml file and gets the host app 

packages. Sometimes, the code of the host app may belong 
to several different namespace, therefore, we need to extract 
the app packages, application namespace and the package 

namespace including the Main Activity (i.e., the launcher 

Activity) and delete these files under the host namespace. 
However, this approach also has following side effects: 1) part 
of host code suffers from the package flattening or renaming 

obfuscation and cannot be delete. 2) part of host code cannot 
be delete due to special package name. 3) the host app and 
TPLs have the same package namespace, the method may 

delete these TPLs, leading to false negatives. As for the case 1) 
& 2), if the host code and TPLs have no dependencies, it will 
not affect the accuracy of TPL identification. If the undeleted 

host parts include the TPLs, we can eliminate the interference 

in the comparison stage.
2) Module Decoupling: The purpose of module decoupling 

is to split up the non-primary module of an app into different 
independent library candidates. Previous research adopts dif-
ferent features for module decoupling such as package struc-
ture, homogeny graph [15], and package dependency graph 

(PDG), however, they more or less depend on the package 

structure of apps. Using the package name or the independent 
package structure to split the in-app TPLs is error-prone, which 
has two obvious disadvantages: 1) low resiliency to package 

flattening [36]; 2) inaccurate TPL instance construction. There 

are many different TPLs sharing the same root package. 
For instance, “com.android.support.appcompat-v7” [37] and 

“com.android.support.design” [38] are two different TPLs but 
the share the same root package com/android/support. Besides, 
one TPL may has multiple parallel package structures, as can 

be seen an example in Fig. 2, this TPL[39] depends on other 

TPLs to build itself and developer deploy the “Fat” jar mode to 

package this project. The host TPL with all invoked TPLs con-
stitutes a complete TPL. TPL dependencies are very common, 
about 47.3% of Android TPLs in maven repository depend 

on others based on our rough statistics. To overcome it, we 

adopt the Class Dependency Graph (CDG) as the features to 

split up the TPL candidates because CDG does not depend on 

the package structure, it is resilient to package flattening. The
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Fig. 2: An example of a TPL’s package structure

class dependency relationship includes: 1) class inheritance, 

we do not consider the interface relationship because it can 

be deleted in obfuscation, 2) method call relationship, and

3) field reference relationship. We use CDGs to find all the 

related class files, and each CDG will be considered as a 

TPL candidate in general situation. Using CDGs can avoid 

the aforementioned situations and package mutation and also 

be resilient to package flattening.

In ATVHu n t e r , we use similarity-based method to iden-

tify TPL-Vs, we generate the TPL feature database by using 

the complete TPL files that we downloaded from the maven 

repository. Therefore, we need to pay attention the packaging 

techniques of Java projects. To facilitate maintenance, most 

developers usually adopt the “skinny” mode to package a 

TPL, which means the released version only contains the 

code by TPL developers without any dependency TPLs. The 

dependency TPLs will be loaded during compilation. To solve 

this situation, we crawl the meta-data of each TPL and record 

their dependency TPLs and packaging technique [40] by 

reading the “pom.xmT file. If the “pom.xml” claims “jar- 

with-dependencies”, it means it includes all dependency TPLs, 

otherwise, it just includes the host TPL code. If we find a jar 

which is a skinny one, we also need to split their dependency 

TPLs by using their package namespace so that we can match 

the correct version in TPL database.

3) Feature Generation: After splitting the candidate li-

braries, we then aim to extract features and generate the 

fingerprint (a.k.a., signature) to represent each TPL file. To 

ensure scalability and accuracy, we choose two granularity 

features. The coarse-grained feature is used to help us quickly 

locate the potential TPLs in the database. The fine-grained 

feature is used to help us identify the TPL-V precisely. (1) For 

coarse-grained features, we choose to extract the Control Flow

Graph (CFG) to represent the TPL since CFG is relatively 

stable [41]. CFG also keeps the semantic information that 

ensures the accuracy to some extent [42]. (2) For fine-grained 

features, we extract the opcode in each basic block of CFG as 

the feature for exact version identification.

Coarse-grained Feature Extraction. We first extract the CFG 

for each method in the candidate TPLs, and traverse the 

CFG to assign each node a unique serial number (starting 

from 0) according to the execution order. For a branch node 

with sequence number n, its child with more outgoing edges 

will be given sequence number n  +  1 and the other child 

is given n  +  2. If two child nodes have the same outgoing 

edges, we will give n +  1 to the child node with more 

statements in the basic block. We then convert the CFGs into 

signatures based on the assigned serial numbers of each node 

to represent each unique TPL, in the form of [node count, 
edge adjacency list], where the adjacency list is repre-

sented as: [parenti -> {child\, child}, . . .)  , parent2 
->  . . . ]. We then hash the adjacency list of CFG as a 

method signature. To improve the search efficiency, we sort 

these hash values in ascending order and then hash the 

concatenate values as one of the coarse-grained TPL features 

(Tl). Meanwhile, we also keep the series of CFG signatures 

in our database to represented each TPL in feature database.

Fine-grained Feature Extraction. Based on our analysis, we 

find the code similarity of different versions for the same TPL 

could be diverse, which can range from about 0% to nearly 

100%. The coarse-grained features (i.e., CFG) are likely to 

generate the same signature of different versions that have mi-

nor changes such as insert/delete/modify a statement in a basic 

block. Therefore, we propose finer-grained features, i.e., op-

code in each basic block of CFG, to represent each version file. 

However, extracting more fine-grained features will increase 

more computational complexity and cost of the computing re-

sources. To ensure the scalability of ATVHUNTER, a common 

way to achieve that is through hashing [43]. However, hash- 

based method has an obvious drawback to determine whether 

two objects (e.g., TPLs, methods) are similar because a minor 

modification can lead to a dramatic change of the hash value. 

Thus, we adopt the fuzzy hashing technique [44] instead of the 

traditional hash algorithm to generate the code signature for
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Fig. 3: Fuzzy hashing for method feature generation as the 

version feature

each method. Fig. 3 shows the feature generation process for 

TPL-Vs. Specifically, we first extract all the opcode sequences 

inside each basic block and concatenate them together. We 

do not consider the operands (e.g., identifier names or hard-

coded URLs) that are not robust for some simple obfuscation 

techniques such as renaming obfuscation and string encryption 

techniques [43, 45]. We then concatenate all opcode sequences 

of each basic block according to the adjacency list of CFG. 

In this step, our method is somewhat similar to LibD [15] 

with respect to the code feature. We also adopt the opcode in 

each basic block of CFG as the code feature. However, we 

also have many differences. LibD uses a package-level hash 

value as the final signature and uses the clustering algorithm to 

detect TPLs. While in ATVHu n t e r , to defend against code 

obfuscation or TPL customization [7], we use the fuzzy hash 

on each method-level feature and similarity comparison to find 

similar methods. We first use a slide window (a.k.a., rolling 

hash [44]) to cut the opcode sequence into small pieces. Each 

piece has an independent contribution to the final fingerprint. 

If one part of the feature changes due to code obfuscation, 

it would not cause a big difference to the final fingerprint. 

We then hash each piece and combine them as the final fine-

grained fingerprint of each method. The fingerprints of all 

methods in a version to represent a TPL-V.

TPL Database Construction. We crawled all Java TPLs 

from Maven Repository [25] (189,545 unique TPLs with their 

3,006,676 versions) to build our TPL database. We use the 

above mentioned method to obtain the signature for each TPL. 

For each version of TPLs, we store both coarse-grained and 

fine-grained features in a MongoDB [46] database. The size of 

the entire database is 300 GB. We spent more than one month 

to collect all the TPLs and another two months to generate 

the TPL feature database.

4) Library Identification: This step aims to identify the 

used TPL-Vs in a given app. To achieve it efficiently, we 

propose a two-stage identification method: 1) potential TPL 

identification; 2) version identification.

1) Potential TPL Identification. Since there are over 3 

million TPL files to be compared in our database for each 

candidate library, to speed up the entire detection process,

we search the database in the following order: a) Search 

by package names. For each library candidate, we first use 

its package namespace (if not obfuscated) to narrow down 

the search space in our database. Note that we cannot di-

rectly use the package name to determine a TPL, because 

the same package namespace could include different third- 

party libraries. For example, the Android support group [47] 

includes 99 different TPLs. These TPLs have the same group 

ID “com. android, support” and the same package name prefix 

“android/support/”. If the package name has been obfuscated 

or a candidate TPL module is without a package name, we 

move to the next filtering strategy. Note that, even though it is 

a non-trivial problem to decide the obfuscated package name, 

in our work, the package name is only used as supplementary 

information to speed up the search process. No matter whether 

a candidate TPL can find a match in the TPL database by 

using the package names, we still continue to search the TPL 

database via other features. Thus, we only applied a simple 

rule to identify the obfuscated apps: if a package name is a 

hash value or a single letter, we consider it obfuscated, b) 

Search by the number o f classes. We assume two TPLs are 

unlikely to be the same one if the number of classes within 

two TPLs has a big difference [48]. If the number of the classes 

in a TPL only accounts for less than 40% of that in another 

TPL in the database, we will not further compare them, which 

can help us speed up the identification process, c) Search 

by coarse-grained features. To speed up, we first search the 

coarse-grained feature T1 in the TPL database; if we find the 

same one, ATVHunter will report this TPL and stop the search 

process. Otherwise, ATVHu n t e r  will compare the candidate 

TPL with TPLs in the database, if all the coarse features are 

the same, we consider find the TPL and the search process will 

stop. If over 70% of the coarse-grained features are the same 

(followed by previous research [33, 43, 48, 49]), we consider 

it as a potential TPL. When we find the potential TPL, we 

will identify the exact version.

2) Version Identification. To identify the specific versions 

of the used TPLs, we utilize the fine-grained features and 

calculate the similarity ratio of two TPLs as the evaluation 

metric. To ensure the efficiency, we do not compare these 

matched methods in previous stage. ATVHu n t e r  can record 

the same method pair in the previous stage, therefore, we only 

need to compare less than 30% of the methods in this phase. 

Since some code obfuscation techniques (e.g., junk code inser-

tion) would change the fingerprints of methods, causing two 

methods that were initially the same to be different. Therefore, 

we need to compare the method similarity and consider two 

methods matched only when their method similarity exceeds a 

threshold. Based on the number of matched methods, we then 

compute the TPL similarity. When the number of matched 

methods exceeds the threshold, we consider we find the correct 

TPL with its version.

• Method Similarity Comparison. We employ edit dis-
tance [43, 50] to measure the similarity between two method 

fingerprints. The edit distance of two fingerprints is defined 

as the number of minimum edit operations (i.e., insertion,
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deletion, and substitution) that is required to modify one 

fingerprint to the other. Based on the edit distance of two 

signatures, we compute the Method Similarity Score (MSS) 
between two methods (i.e., m a and m b) by using the formula:

MSS(ma,mb)  ̂ _  d[ma,m b\ 
m ax(m , n ) (1)

where m and n represent the signature length of two methods 
and d[ma, mb] is the edit distance of two method signatures. 
If M S S  exceeds a certain threshold 0, we consider the two 

methods are matched. Based on our experimental result in 

§ IV-A, we choose 6 =  0.85 as the threshold.
•  TPL Similarity Comparison. Based on the number of 
matched methods, the similarity of two TPLs (fy and ¿2) are 

defined as follows:

T S S { t1, t 2) =  M!^ nt21 (2)
M |t2|

where 11 is a TPL candidate from the test app, £2 is a TPL from 

the database for comparison. M|t2 is the number of methods 
in ¿2 • M\tl |~| t21 is the number of matched methods of 11 and £2 
which should meet two conditions: (a) , m ,, where m* is
a method of t \ ,  m j is a method of ¿2 , M S S (m i, m j ) > 6; (b) 
3m j, that M S S (m i, m,j) =  1, that is, we only compare two 

TPLs that have at least one exactly matched method in order 

to speed up the identification process. For a TPL candidate fy, 
we consider we find a potentially matched TPL-V (i2) in the 

database when T S S ( t \ , t 2 ) > S, S is the similarity threshold, 
and select the TPL-V with the largest similarity score as the 

final result of fy, providing the identified TPLs with group id, 
artifact id and version number. We set the threshold 5 =  0.95 

based on our experimental result in § IV-A.

B. Vulnerable TPL-V Identification
We first build a vulnerable TPL-V database, based on which 

we identify the vulnerable TPL-Vs used by the apps.
1) Database Construction: The vulnerable TPL-V database 

construction process includes collection of know vulnerabil-
ities in Android TPLs and security bugs from open-source 

software.
Known TPL Vulnerability Collection. To collect the vul-
nerable TPL versions, we convert the names of all TPL files 

(3,006,676 in total) in our feature database into Common 

Platform Enumeration (CPE) format [51] and exploit cve- 
search [52], a professional CVE search tool, to query the 

vulnerable TPLs from the public CVE (Common Vulnera-
bilities and Exposures) database by mapping the transformed 

TPL names. In this way, we can get the known vulnerabilities 
of TPL-Vs and their detailed information, including the CVE 

id, vulnerability type, description, severity score from Com-
mon Vulnerability Scoring System (CVSS) [53], vulnerable 

versions, etc. We use CVSS v3.0 to indicate the severity of the 

collected vulnerabilities in this paper. Finally, we collected 

1,180 CVEs from 957 unique TPLs with 38,243 affected 

versions.
Security Bug Collection. Since ATVHunter is able to 
identify the specific versions of TPLs used by apps, therefore,

besides the known vulnerabilities, we also obtain 224 security 

bugs from Github [35] and Bitbucket [54] owing to the col-
laboration with our anonymous industrial collaborators.These 

bugs come from 152 open-source TPLs with their correspond-
ing 4,533 versions. All of these security bugs have been cross- 
validated by the security experts in industry.

2) Vulnerable TPL-V Identification: When ATVHunter 
identifies the used TPL-Vs in the app, it will search the vulner-
able TPL database to check whether these identified TPL-Vs 
are vulnerable or not. If ATVHunter finds the vulnerable 

TPL-Vs, it will generate a detailed vulnerability report to 

users. We believe ATVHunter can serve as an extension 

of ASI Program [11] for Google. The previous research [6] 
reported that vulnerabilities listed on ASI program can draw 

more attention to developers. However, the vulnerabilities 
are reported by ASI program is limited. Our comprehensive 

dataset can be a supplement to ASI program.

C. Implementation
ATVHunter is implemented in 2k+ lines of python 

code. We employ Apktool [55], a reverse engineering tool 
commonly-used by much previous work [56-59] to decompile 

the Android apps and exploit Androguard [60] to obtain the 

class dependency relations in order to get the independent 
TPL candidates. We then employ Soot [61] to generate CFG 

and also build on Soot to get the opcode sequence in each 

basic block of a CFG. We use the ssdeep [62] to conduct 
fuzzy hash algorithm to generate the code feature and employ 

the edit distance [50] algorithm to find the in-app TPLs. Our 

approach can pinpoint the specific TPL versions. We maintain 

a library database containing more than 3 million TPL files 

and construct a vulnerable TPL database that includes 224 

security bugs from open-source Java software on Github, and 

1,180 CVEs from 910 Android TPLs in public CVE databases.

IV. Evaluation

In this section, we first construct our ground truth and 

choose appropriate thresholds for MSS and TSS in § IV-A. 
Based on the thresholds, we further evaluate ATVHunter 
from effectiveness (RQ1), scalability (RQ2), and the capa-
bility of code obfuscation-resilience (RQ3). All the experi-
ments were conducted on a commercial cloud service running 

Ubuntu 16.04 LTS with 8-core Intel(R) Xeon(R) Gold 6151 

processor, CPU @ 3.00GHz and 128G memory.

A. Preparation

•  Ground-truth Dataset Construction. We build this dataset 
for three primary purposes: 1) verify the effectiveness of 
ATVHu n t e r ; 2) compare the performance with the state- 
of-the-art tools; 3) release the datasets to the community to 

promote follow-up research. Since it is difficult to know the 

specific TPL-Vs from commercial apps, we choose the open- 
source apps to compare ATVHu n t e r  with existing tools.

We first collect the latest versions of 500 open-source apps 
from F-Droid [63] that is the largest repository maintaining 

open-source Android apps. We choose open-source apps as
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subjects since we can get the specific TPL information (in-

cluding the version) in the configuration files and source code 

of apps, such a mapping relation between apps and TPLs is 

used as the ground-truth for performance evaluation. These 

apps are from 17 different categories with various sizes. For 

each app, we manually analyze it and get the in-app TPLs 

with their specific versions. According to our analysis, these 

apps contain the number of TPLs ranging from 2 to 37 and 

these TPLs also have different functions with diverse sizes. 

We then download these TPLs with their versions from the 

Maven repository [25]. To ensure the evaluation results more 

reliable, we collect the complete versions of each TPL. We 

filter 144 apps out due to the incomplete versions of TPLs 

maintained in the Maven repository. Note that, based on our 

analysis, we find the previous published datasets have some 

biases. TPLs from LibScout and LibID are most independent 

ones, thus, we add some TPLs that depend on other TPLs in 

our dataset, such as “Retrofit” depends on “Guava”, to reveal 

the lib identification capability of different tools. Finally, we 

choose 356 apps and 189 unique TPLs with the complete 6,819 

version files in these apps as the ground truth.

• Threshold Selection. To avoid bias, we randomly select 

three groups (3 x 200) of apps except the aforementioned 

dataset to decide appropriate thresholds for method similarity 

score 0, and TPL similarity score 8. We use method-level false 

positive rate (FPR) and false negative rate (FNR); and TPL- 

level FPR and FNR as the metrics to decide the similarity 

thresholds by varying 6 and 8 from different thresholds. We 

employ the three groups of apps to implement the same 

experiment three times and then decide the optimal thresholds.

Fig. (4a) shows the method-level FPR and FNR at different 

similarity thresholds. We can find when the threshold 6 is 

around 0.85, both the FPR and FNR are relatively low. 

Therefore, we choose 6 = 0.85 as the MSS threshold where 

the FPR is less than 1% and FNR is less than 0.5%, which 

can achieve a good trade-off. Fig. (4b) shows the TPL-level 

FPR and FNR at different thresholds. According to the result, 

we find that when the threshold is gradually close to 0.8, 

many false positives appear due to the same TPL with different 

minor-changed versions. When the threshold is close to 1, the 

number of false negatives increases. From Fig. 4, we can find 

FPR and FNR achieve a good trade-off when the threshold is 

around 0.95, we thus choose 0.95 as the threshold 8 of TSS. In 

summary, we employ 0 = 0.85 and 8 = 0.95 for the following 

experiments.

B. RQ1: Effectiveness Evaluation

Experimental Setup. For the effectiveness evaluation, we 

compare ATVHu n t e r  with the state-of-the-art publicly- 

available TPL detection tools (i.e., LibID, LibScout, OSSPo- 

LICE, and LibPecker) that can specify the used TPL versions 

by using our ground truth dataset (§ IV-A). We employ three 

evaluation metrics, i.e., precision (Tp+FP), recall (Tp+FN) 
“ d FI Score to evaluate the detection

accuracy at both TPL-level and version-level. TPL-level iden-

tification indicates the ability to identify the in-app TPLs 

correctly (without specifying the versions), and version-level 

identification indicates the ability to find both the correct TPLs 

and the correct versions. For example, if a tool reports that it 

finds “okio-2.0.0, okio-2.3.0” in an app but the ground truth 

is “okio-2.4.3”, in this situation, for TPL-level, we consider 

the tool find the correct TPL; for version-level, we consider 

there are two false positives and one false negative.

Result. Table I shows the comparison results of ATVHu n t e r  

and other state-of-the-art tools. Considering the overall per-

formance, we can see ATVHu n t e r  outperforms other tools 

regarding all the metrics; the FI score of ATVHu n t e r  at 

library-level and version-level reached 93.43% and 88.82%, 

respectively. For library-level identification, we can find that 

all of them can achieve high precision at TPL-level identifi-

cation but the performance of recall of current state-of-the- 

art tools is mediocre. In contrast, the recall of ATVHu n t e r  

is 88.79%, which is far better than others. For version-level 

identification, we can find the precision (90.55%) and recall 

(87.16%) of ATVHu n t e r  is much higher than that of other 

tools. Compared with the library-level precision, we can see 

the precision of each tool at version-level decreases a lot, 

which means most of them can identify the TPL but they 

cannot pinpoint the exact versions. We elaborate on the reasons 

for false positives and false negatives of ATVHu n t e r  and 

other state-of-the-art tools as follows.

FP Analysis. The reasons for the false positives of 

ATVHu n t e r  can be concluded in three points: (1) reuse o f 
open-source components. We find some TPLs are re-developed 

based on other TPLs, with only small code changes, if their 

similarity is larger than the defined threshold, ATVHUNTER 

will report the reused ones at the same time, which are false 

positives. (2) Artifact id or group id changes. We identify a 

TPL by using its group id, artifact id and version number. 

However, we find that some old version TPLs has migrated to 

the new ones, with their group id or artifact id changed, but 

their code has little difference. Take the TPL file “EventBus” 

as an example, “org.greenrobot:eventbus” [64] is the upgraded 

version of “de.greenrobot:eventbus” [65]. The code of these 

two TPLs have high similarity but with different group ids. 

ATVHu n t e r  matches both of them and considers they are 

different TPLs. (3) Different versions with high similarity. The 

other reason for the false positives of ATVHu n t e r  is that 

some versions of the same TPL have little or no difference in 

their code. For example, “ACRA_4.8.3” only modifies a few 

statements in a method of “ACRA_4.8.2”, and ATVHUNTER
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TABLE I: Library and Version Detection Comparison

Tools
Library-level Version-level

Precision Recall F I Precision Recall F I

A TV H unter 98.58% 88.79% 93.43% 90.55% 87.16% 88.82%

LibID 98.12% 68.45% 80.64% 68.70% 66.42% 67.54%

LibScout 97.10% 46.65% 63.02% 44.82% 43.50% 44.15%

O SSPoLIC E 97.91% 43.39% 60.13% 88.83% 42.25% 57.26%

L ibPecker 93.16% 57.82% 71.35% 60.35% 57.67% 58.98%

would report the two versions of the TPL at the same time, 
one of them is regarded as false positives. In our database, we 

even find some versions of the same TPL have the same Java 

code but different resource files, configuration files or native 

code (C/C++), but this situation does not affect the vulnerable 

TPL identification process.
As for the false positives of other tools, the code feature 

of LibScout (i.e., fuzzy method signature) is too coarse, 
which would make it generate the same signature for different 
versions if the two versions have minor differences. As the 

aforementioned example “ACRA”, all existing tools cannot 
distinguish the two versions because it generates the same 

signature for them. Besides, if the methods are very simple, the 

signatures generated by LibScout and OSSPoLICE would also 

be the same, which can also lead to false positives. LibPecker 

depends on the package structure as a supplementary feature 

to identify different TPLs, they may report a TPL depend on 

others TPLs several times. For instance, if an app use the 

Library C that is built on library A and B, if library A and 

B are also in TPL feature database, LibPecker could report 
library C as library A and B, leading to false positives.
FN Analysis. ATVHunter aims to find TPL versions with 

high precision, thus, we sacrificed part of the recall when we 

select the similarity threshold. The reasons for false negatives 
of ATVHunter are as follows: (1) When compiling an app, 
developers may take some optimizations to reduce the size 

of their app. The strategy is that the compiler automatically 

removes some functions of TPLs that are not called by 

host apps, which causes the in-app TPLs to be different 
from the original TPLs, leading to false negatives. (2) Some 

TPLs are integrated into the same package namespace of the 

host app, which may be deleted at the pre-processing stage, 
leading to false negatives. For example, some companies and 

organizations develop their own Ad SDK, whose package 

name is the same as that of the host app. However, the code 

under the package structure of the host app is deleted at 
the pre-processing stage, i.e., the ad library is also deleted 

without further consideration, causing the false negatives.
(3) Another reason is that some apps use rarely-used open- 
source TPLs hosted on open-source platforms (e.g., Github 

or Bitbucket) which are not in our TPL database (with over 

3 million TPLs), leading to false negatives. For example, 
the TPLs “com.github.DASAR.ShiftColorPicker”, “android- 
retention-magic-1.2.2”, and “android-json-rpc-0.3.4” are de-
veloped and hosted on Github, and not in our dataset, there-
fore, ATVHunter cannot find this TPL. Since other tools 

also use the similarity comparison method to find in-app TPLs, 
this situation also may affect their recall.

As for the false negatives of other TPL detection tools, they

more or less use the package structure to generate the TPL 

features. However, the package structure is not stable, which 

can be easily changed by the package flattening obfuscation. 
We find the packages structures of many real-world in-app 

TPLs are more or less obfuscated, and some TPLs are even 

without any package structure; current tools cannot handle 

such cases, leading to false negatives. Besides, it is difficult to 

use the package structure and package name to ensure the TPL 

candidates, lingas demonstrated in §ni-A4. Many different 
TPLs may have the same package name, and one independent 
package tree could include several TPLs; therefore, existing 

tools may generate incorrect code features for these TPLs, 
which also can lead to false negatives. LibID uses Dex2jar [32] 
to decompile apps, it does not always work in all apps, 
which discounts the recall of LibID. Besides, LibScout and 

OSSPoLICE are sensitive to CFG structure modification.
Compared with them, our CFG adjacency list is less sen-

sitive to the CFG structure modification. We consider both 

the syntax and semantic information, and our method adopts 
the fuzzy hash to generate the TPL fingerprints. Thus, code 

statements modification can only affect part of the fingerprints, 
which is more robust to different code obfuscations. Based on 

the above analysis, we can find that the strategy of feature 

selection, extraction, and generation are essential, which can 

directly affect the performance of the system.
Conclusion: ATVHunter outperforms state-of-the-art 
TPL detection tools, achieving 98.58% precision, 88.79% 

recall at library level, and 90.55% precision, 87.16% recall 
at version level.

C. RQ2: Efficiency Evaluation 

In this section, we investigate the detection time of 
ATVHu n t e r  and compare it with state-of-the-art tools to 

verify its efficiency. We compare the detection time of 
ATVHu n t e r  with existing tools by employing the dataset 
collected in § IV-A. All tools construct their own TPL 

databases using the same dataset (6,819 TPL versions). All 
compared tools choose similarity comparison method to find 

in-app TPLs, thus, the detection time mainly depends on the 

number of in-app TPLs and the number of TPL features in the 

database. The detection time is the period cost for finding all 
TPL-Vs in a test app. Note that the detection time does not 
include the database construction time.
Result: Table II shows the comparison result of detection 

time. We present four metrics (i.e., Q l, mean, median, Q3) 
to evaluate the efficiency of each tool. We can see that the 

efficiency of ATVHunter also outperforms the state-of-the- 
art tools (66.24s per app on average). The second one is 

LibScout, and the average detection time is about 83s. LibID 

and LibPecker are relatively time-consuming; the average 

detection time could reach about 16.56h and 4.5h per app.
ATVHunter is more efficient than others because our 

method only needs to directly search to find the matching 
pairs in most situations, which can dramatically decrease 
the detection time. ATVHunter employs a two-stage iden�
tification method (i.e., filter the potential TPLs first and

1702

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:56 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: Comparison Results o f Detection Time (per app).

Tool A T V H un ter L ib ID L ibS cou t O S S P oL IC E L ib P eck e r

Q1 15.92s 51.43s 30s 33.48s 12168s

M ean 66.24s 59616s 83s 2052.34s 16396s

M ed ian 47.78s 9286s 64s 80.42s 16632s

Q 3 90.30s 38300s 100s 226.60s 23292s

identify the exact TPL with its specific version) to find the 

matched libraries from the database, which does not need to 

directly compare with the whole database using fine-grained 

features and largely reduces the comparison time and the 

whole detection time. In contrast, in the similarity feature 

comparison stage, LibScout needs to use the class dependency 

to filter some impossible pairs out, and this step is also time-
consuming. Besides, LibScout regards the code of the host 
app as one of the candidate TPLs, which also costs extra 

time. OSSPoLICS exploits the fuzzy method signature (the 

same feature of LibScout) [5] as the TPL code feature and 

function centroid [42] as the version code feature. The feature 

granularity of OSSPoLICE is much finer than that of LibScout, 
thus, the computational complexity of OSSPoLICE is also 

greater than that of LibScout. Besides, calculating centroid is 

heavy in terms of runtime overhead and computing resources 
consumption, especially for the third element (loop depth) in 

the centroid. The time complexity is 0 ( (n + e )(c + l))  and the 

space complexity is 0 (n  + e) to find all the loops, where there 

are n  nodes, e edges and c elementary circles in the graph. 
For LibPecker, if it tries to find a similar class, it needs to 

compare three times while our method only needs to compare 

once. Besides, LibPecker also needs to compare the package 

hierarchy structure and then calculates the similarity score, 
which also adds extra time. LibID chooses finer granularity 

features to identify TPLs, the class dependency analysis, CFG 

construction and class matching are also time-consuming.
Conclusion: Compared with other tools, ATVHunter can
identify exact TPL-Vs with high efficiency and it takes less
time for TPL detection on the ground-truth TPL database.

D. RQ3: Obfuscation-resilient Capability

The obfuscation-resilient capability is an important index to 

measure the performance of a TPL detection tool since obfus-
cation techniques can discount the detection performance. 
Experimental Setup. To evaluate the obfuscation-resilient 
capability of ATVHunter regarding different obfuscation 

techniques, we select 100 apps from the public dataset [66] 
including multiple categories, and use a popular obfuscation 

tool, Dasho [22], to obfuscate these apks with four widely-used 

obfuscation techniques (i.e., renaming obfuscation, control 
flow randomization, package flattening and dead code re-
moval). Obfuscation is a time-consuming task and requires the 

obfuscation tool to analyze the code logic in order to conduct 
the obfuscation. It took us about half a month to obfuscate all 
of apps. Finally, we get one group (100 apps) of the original 
apps and four groups (100 x 4) of the obfuscated apps. Based 

on these groups of apps, we compare ATVHunter with other 

tools in terms of the detection rate (jg ^ ) at version-level.

TABLE HI: Comparison on Code Obfuscation Techniques

Tool
No

O bfuscation

O bfuscation

R enam ing C FR P K G  FLT Code RM V

A TV H unter 99.26% 99.26% 90.13% 99.26% 75.57%

LibID 12.93% 12.93% 0.03% 1.58% 2.49%

LibScout 88.75% 88.75% 18.24% 17.69% 17.69%

O SSPoLIC E 85.62% 85.62% 23.04% 39.52% 48.86%

L ibPecker 98.79% 98.79% 86.63% 73.56% 79.28%

Renaming: renaming obfuscation; CFR: Control Flow 

Randomization; PKG FLT; Package Flattening; Code RMV: Dead 

Code Removal

Result: The detection results are presented in Table in, 
the second column is the detection rate of each tool on 

apps without obfuscation. We can see ATVHunter achieves 
the highest detection rate (99.26%), followed by LibPecker 

(98.79%). Besides, it can be found that the detection rate of 
LibID is only 12.93%, which has a big gap with the result 
in RQ1. We found the main cause of this gap is due to the 

inability of decompilation component dex2jar used by LibID. 
Many apps in this dataset cannot be decompiled successfully 

by dex2jar because of TPL compatibility issues, type errors 
and anti-decompilation settings, hence LibID cannot generate 

the in-app TPL signature, leading to the low detection rate.

As for the capability of tools on obfuscated apps, we can 

see that all tools are resilient to renaming obfuscation since 

the detection rate of all tools on renaming apps is the same 

as the apps without obfuscation. Our ATVHunter is less 

affected by all of these code obfuscation techniques. Code 

removal has the greatest impact on ATVHunter, detection 

rate dropped by about 24%. The detection rate on apps with 

other obfuscation techniques remains over 90%, demonstrating 

the capability of ATVHunter towards commonly-used code 

obfuscation techniques. Moreover, we can find the recall of 
apps are obfuscated by package flattening is the same with 

the apps without obfuscation, it shows that our method is 

completely resilient to package flattening. In contrast, apart 
from the renaming obfuscation, the detection rate of other 

tools has been affected by obfuscations to varying degrees. 
Especially for LibScout, the performance has dropped by 

more than 70%. LibScout can only correctly identify 17.69% 

of in-app TPLs that are obfuscated by package flattening 

or dead code removal, and 18.24% of in-app TPLs with 

control flow randomization. Except ATVHunter, LibPecker 

achieves better performance.

As for the control flow randomization (CFR), LibScout and 

OSSPoLICE use the fuzzy method signature as code features 
that keep the syntax information but do not remain semantic 

information; thus, it is difficult to defend against CFR. Besides, 
OSSPoLICE employs CFG centroid [42] as the version-level 
code feature. The CFG centroid is a three-dimensional vector, 
and each dimension indicates the in-degree, out-degree and 

loop count, respectively. The CFG centroid is sensitive to CFG 

structure modification; hence the detection rate of OSSPoLICE 

has dropped a lot regarding apps with CFR. LibPecker and 

LibID show a good resiliency to CFR because both of them 

select the class dependencies as the code features that would
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not be changed easily by CFR. ATVHunter extracts CFG 

as our coarse-grained feature and opcode in the basic block 

of CFG as the fine-grained feature. We keep the semantic 

information and remove the operands so our method is resilient 
to identifier renaming. We split the opcode sequence into 

small pieces and exploit fuzzy hash generate the code feature, 
although the dead code removal obfuscation and control flow 

obfuscation techniques can affect a part of code features, 
our strategy effectively reduces the interference, making the 

detection rate decline slightly.
Regarding the package flattening technique, existing tools 

more or less depend on package structure to generate TPL sig-
natures, without a doubt, which will affect their performance. 
More specifically, LibScout depends on package structure/- 
name to split TPLs. Firstly, many TPLs belong to the same 

group that may have the same package name. It is difficult to 

split these TPLs correctly if they belong to the same group. 
Secondly, the package flattening technique can easily change 

the package hierarchy structure or even remove the whole 

package tree, resulting in that LibScout will generate incorrect 
TPL signatures or cannot generate signatures for TPLs without 
package structures. OSSPoLICE is built on LibScout hence 

OSSPoLICE inherits the limitations of LibScout. LibPecker 

assumes the package structure is preserved during obfuscation 

but it does not always hold true for real-world apps. This 
strong assumption directly restricts it to achieve better perfor-
mance. In contrast,ATVHunter uses the class dependency 

relation to split different TPL candidates (on the basis of 
high cohesion and low coupling among different TPLs), which 

completely does not depend on the package structure, thus, 
ATVHunter is resilient to package flattening/renaming.

As for dead code removal, this obfuscation technique will 
delete some code that is not invoked by host apps, leading the 

code features of in-app TPLs are different from the original 
TPLs. This obfuscation can affect all TPL detection tools. 
LibPecker chooses class dependency as the code feature that 
keeps the method call relationship while we adopt CFG as 
code feature that do not include the method dependency. Our 

method may include methods and classes without invocations. 
The signature of LibPecker stores more semantic information 

than that of us so that LibPecker achieves better performance 

in dead code removal.

Conclusion: ATVHunter offers better resiliency to code
obfuscation than existing tools, especially for identifier re�
naming, package flattening, and control flow randomization.

V. Large-Scale Analysis

By leveraging ATVHunter, we further conducted a large 
scale study on Google Play apps to reveal the threats of 
vulnerable TPL-Vs in the real world.
Dataset Collection. We collected commercial Android apps 
from Google Play based on the number of installations. For 

each installation range, we crawled the latest versions of apps 
from Aug. 2019 to Feb. 2020 for this large-scale experiment. 
We only consider popular apps whose installation ranges from 

10,000 to 5 billion, because the vulnerabilities in apps with

large installations can affect more devices and users. Note that 
the number of apps in each installation range is unequal; in 

general, the number of apps with higher installations usually is 

relatively smaller. We finally collected 104,446 apps across 33 

different categories as the study subjects. From our preliminary 

study on these apps, we found 72% of them (73,110/104,446) 
use TPLs to facilitate their development. We thus focus on the 

73,110 apps to conduct the following analysis.

A. Vulnerable TPL Landscape
Before conducting the impact analysis of vulnerable TPLs, 

we first present some essential information about these vulner-
able TPL-Vs to let readers have a clear understanding about 
the threats in TPLs. We use CVSS v3.0 security metrics [53] 
to indicate the severity (i.e., low, medium, high, and criti-
cal) of vulnerabilities. The score greater than 7.0 means the 

vulnerability with high and critical severity, which accounts 
for 21.35% of all the vulnerabilities in our dataset. These 

severe vulnerabilities usually involve remote code execution, 
sensitive data leakage, Server-side request forgery (SSRF) 
attack, etc. Even worse, we find 74.95% of these vulnerable 

TPLs are widely-used by other TPLs. For example, the li-
brary “org.scala-lang:scala-library” with a severe security risk 

(C V S S  = 9.8) that allows local users to write arbitrary class 

files, has been used 24,112 times by other TPLs, and most 
of vulnerable versions of this TPL have been used more 

than 2,000 times. Without a doubt, such cases expand the 

spread of vulnerabilities and add more security risks to app 

users. These severe vulnerabilities usually involve remote code 

execution, sensitive data leakage [67, 68], malicious code or 

SQL injection, bypass certificates/authentication, etc. These 

behaviors definitely bring unpredictable risks to users’ privacy 

and property security. We found that most of these vulnerable 

TPLs belong to utility, accounting for 98.7%.

B. Impact Analysis o f Vulnerable TPLs
In our dataset, we find that about 12.37% (9,050/73,110) 

of apps include TPL-Vs, involving 53,337 known vulnera-
bilities and 7,480 security bugs from open-source TPLs. The 

known vulnerabilities are from 166 different vulnerable TPLs 
with corresponding 10,362 versions and the security bugs 
are from 27 vulnerable TPLs with 284 different versions. 
These vulnerable apps use a total of 58,330 TPLs and ap-
proximately 18.2% of them are vulnerable ones. Among the 

9,050 vulnerable apps, 329 apps (37.5%) with TPLs contain 

both vulnerabilities and security bugs. There are 778 apps 
containing the TPLs with security bugs and each app contains 
about 2.45 security bugs in their TPLs. Furthermore, we 

also find many education and financial apps use the popular 

UI library “PrimeFaces” [69] that include sever vulnerability 

(CVE-2017-1000486). Primefaces 5.x is vulnerable to a weak 

encryption flaw resulting in remote code execution. For more 

analysis result, you can refer to our website [26].

C. Lessons Learned
Based on our analysis, we found many apps include vul-

nerable TPLs leading to privacy leakage and financial loss.
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However, developers seem unaware of the security risks of 
TPLs. We explore the reasons from the following points:
For TPL developers, according to our result in § V-A, the 

reuse rate of vulnerable TPLs is pretty high (>  75%). Many 

TPL developers also develop their own TPLs based on existing 

ones, especially popular ones, but seem seldom to check the 

used components for any known vulnerabilities. Even worse, 
we find 210,727 TPLs use vulnerable TPL versions, indicating 

many TPL developers may be unaware of tracking these 

vulnerability fix solutions in these open-source products. Al-
though some TPL developers have patched the vulnerabilities 
in later versions, many affected apps still use the old versions 

with vulnerabilities, which indirectly expands the threats of 
the vulnerabilities in TPLs. The lack of centralized control of 
these open-source TPLs also poses attack surfaces for hackers. 
For app developers, we reported some TPL versions with 

severe vulnerabilities to the corresponding app developers 
via emails. We wrote 50 emails to these app developers or 

companies and received 5 replies in 2 months. Based on then- 
feedback, we find 1) most of the developers only care about 
the functionalities provided by the TPLs and are unaware of 
the security problems in these TPLs. In fact, it is reasonable 

since one is unlikely to analyze all the used libraries before 

using them, which eliminates the convenience of using these 

components or libraries. However, based on our analysis, 
some commonly-used TPLs contain severe vulnerabilities, we 

suggest that app developers should be aware of vulnerabilities 

in TPLs and ATVHunter could be helpful for them to 

detect vulnerable TPL versions. 2) Some app developers or 

companies do not know how to conduct security detection 

of these imported TPLs. They also hope “our team can help 

them conduct the security assessment of the used TPLs or tell 
them the specific analysis processes.” 3) Some app developers 
did not know that some vulnerable TPLs have been updated 

or patched and they still used these old TPL versions. Even if 

they noticed the upgraded versions, some of them are reluctant 
to change the old ones due to the extra cost. They said that 
“If a TPL adds many new functions, they have to spend much 

time understanding these new features and change too much 

of their own code. Thus, they prefer to keep old TPL-Vs.” 

For app markets, we found that many app markets do not 
have such a security assessment mechanism to warn developers 
about the potential security risks in their apps. As far as we 

know, only Google provides a service named App Security 

Improvement (ASI) program that provides tips to help app 

developers of Google Play to improve the security of their 

apps. Previous research [6] reported that vulnerabilities fisted 

on ASI program could draw more attention from developers. 
However, the vulnerabilities reported by ASI program are lim-
ited due to the lack of a comprehensive vulnerability database 

and such a vulnerable TPL detection tool, like ATVHunter.

VI. Discussion

Limitations. (1) If the Java code of several versions is 

the same, ATVHunter would provide several candidates 
instead of a specific one, leading to some false positives. (2)

ATVHunter may eliminate some TPLs due to mistakenly 

regarding them as part of the primary module if such TPLs 
are imported into the package structure of the host app, 
thus causing some false negatives. (3) We only focus on 

the Java libraries and do not consider the native libraries. In 

fact, the native library is also an essential part in Android 

apps and the vulnerabilities inside would cause more severe 

consequences. Detecting vulnerable native libraries is left for 

our future work. (4)ATVHunter adopts static analysis to 

find the TPLs, therefore, we may miss some libraries are 

loaded in dynamic methods. Besides, some TPLs have some 

dynamic behaviors, such as refection, dynamic class loading. 
Our approach may miss some dynamic features and affect 
our detection performance. (5) We crawled about 3 million 

TPLs from maven to build our feature database. Although this 
database is large and comprehensive and it can guarantee the 

detection rate of ATVHunter, our method still have some 

limitations. The third-party libraries are constantly updating, 
which means ATVHunter cannot find these newly emerging 

TPLs. Thus, how to find these newly emerging TPLs and 

dynamically maintain our database will be our future work. 
Threats to Validity. (1) The first threat comes from the 

similarity threshold, it is inevitable to induce some false 

negatives and false positives for some apps due to the minor 

difference between TPLs. To minimize the threat, we selected 

the similarity threshold through a reasonable experimental 
design. (2) Another threat comes from the analysis on only free 

apps. We believe that it is meaningful to study the vulnerable 

TPLs used by both free and paid apps, which is left for future 

work.

VII. Conclusion
In this paper, we proposed ATVHunter, a TPL detection 

system which can precisely pinpoint the TPL version and 

find the vulnerable TPLs used by the apps. Evaluation results 
show that ATVHunter can effectively and efficiently find 

in-app TPLs and is resilient to the state-of-the-art obfuscation 

techniques. Meanwhile, we construct a comprehensive and 

large vulnerable TPL version database containing 224 security 

bugs and 1,180 CVEs. ATVHunter can find the vulnerable 

TPLs in apps and reveals the threat of vulnerable TPLs in apps, 
which can help improve the quality of apps and has profound 

impact on the Android ecosystem.
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